scholarly journals Numerical study of bubble dynamics with the Boundary Element Method

2011 ◽  
Vol 327 ◽  
pp. 012028 ◽  
Author(s):  
N Méndez ◽  
R González-Cinca
2012 ◽  
Vol 9 (1) ◽  
pp. 94-97
Author(s):  
Yu.A. Itkulova

In the present work creeping three-dimensional flows of a viscous liquid in a cylindrical tube and a channel of variable cross-section are studied. A qualitative triangulation of the surface of a cylindrical tube, a smoothed and experimental channel of a variable cross section is constructed. The problem is solved numerically using boundary element method in several modifications for a periodic and non-periodic flows. The obtained numerical results are compared with the analytical solution for the Poiseuille flow.


2013 ◽  
Vol 716 ◽  
pp. 137-170 ◽  
Author(s):  
C.-T. Hsiao ◽  
J.-K. Choi ◽  
S. Singh ◽  
G. L. Chahine ◽  
T. A. Hay ◽  
...  

AbstractCarefully timed tandem microbubbles have been shown to produce directional and targeted membrane poration of individual cells in microfluidic systems, which could be of use in ultrasound-mediated drug and gene delivery. This study aims at contributing to the understanding of the mechanisms at play in such an interaction. The dynamics of single and tandem microbubbles between two parallel plates is studied numerically and analytically. Comparisons are then made between the numerical results and the available experimental results. Numerically, assuming a potential flow, a three-dimensional boundary element method (BEM) is used to describe complex bubble deformations, jet formation, and bubble splitting. Analytically, compressibility and viscous boundary layer effects along the channel walls, neglected in the BEM model, are considered while shape of the bubble is not considered. Comparisons show that energy losses modify the bubble dynamics when the two approaches use identical initial conditions. The initial conditions in the boundary element method can be adjusted to recover the bubble period and maximum bubble volume when in an infinite medium. Using the same conditions enables the method to recover the full dynamics of single and tandem bubbles, including large deformations and fast re-entering jet formation. This method can be used as a design tool for future tandem-bubble sonoporation experiments.


1993 ◽  
Vol 01 (04) ◽  
pp. 455-468 ◽  
Author(s):  
Z. S. CHEN ◽  
G. HOFSTETTER ◽  
H. A. MANG

A 3D boundary element method for the determination of the acoustic eigenfrequencies of car compartments, characterized by a unified treatment of Robin, Dirichlet, and Neumann boundary conditions, is presented. The drawback of frequency-dependent matrices of the eigenvalue problem is overcome by means of the Particular Integral Method. Thus, the standard numerical algorithms for the extraction of eigenvalues can be applied. The numerical study contains both a comparison of numerical results with analytical solutions of a simple problem with different types of boundary conditions and a comparison of numerical results of a large-scale problem with respective numerical results, computed on the basis of the finite element method. In addition, for the latter example, different numerical algorithms for the eigenvalue extraction are examined.


Sign in / Sign up

Export Citation Format

Share Document