A Numerical Study Of The Coefficient Matrix Of The Boundary Element Method Near Characteristic Frequencies

1994 ◽  
Vol 175 (1) ◽  
pp. 39-50 ◽  
Author(s):  
P. Juhl
2012 ◽  
Vol 9 (1) ◽  
pp. 94-97
Author(s):  
Yu.A. Itkulova

In the present work creeping three-dimensional flows of a viscous liquid in a cylindrical tube and a channel of variable cross-section are studied. A qualitative triangulation of the surface of a cylindrical tube, a smoothed and experimental channel of a variable cross section is constructed. The problem is solved numerically using boundary element method in several modifications for a periodic and non-periodic flows. The obtained numerical results are compared with the analytical solution for the Poiseuille flow.


1993 ◽  
Vol 01 (04) ◽  
pp. 455-468 ◽  
Author(s):  
Z. S. CHEN ◽  
G. HOFSTETTER ◽  
H. A. MANG

A 3D boundary element method for the determination of the acoustic eigenfrequencies of car compartments, characterized by a unified treatment of Robin, Dirichlet, and Neumann boundary conditions, is presented. The drawback of frequency-dependent matrices of the eigenvalue problem is overcome by means of the Particular Integral Method. Thus, the standard numerical algorithms for the extraction of eigenvalues can be applied. The numerical study contains both a comparison of numerical results with analytical solutions of a simple problem with different types of boundary conditions and a comparison of numerical results of a large-scale problem with respective numerical results, computed on the basis of the finite element method. In addition, for the latter example, different numerical algorithms for the eigenvalue extraction are examined.


2005 ◽  
Vol 13 (01) ◽  
pp. 71-85 ◽  
Author(s):  
Y. YASUDA ◽  
T. SAKUMA

The fast multipole boundary element method (FMBEM) is an advanced BEM, with which both the operation count and the memory requirements are O(Na log b N) for large-scale problems, where N is the degree of freedom (DOF), a ≥ 1 and b ≥ 0. In this paper, an efficient technique for analyses of plane-symmetric sound fields in the acoustic FMBEM is proposed. Half-space sound fields where an infinite rigid plane exists are typical cases of these fields. When one plane of symmetry is assumed, the number of elements and cells required for the FMBEM with this technique are half of those for the FMBEM used in a naive manner. In consequence, this technique reduces both the computational complexity and the memory requirements for the FMBEM almost by half. The technique is validated with respect to accuracy and efficiency through numerical study.


2005 ◽  
Vol 19 (28n29) ◽  
pp. 1579-1582 ◽  
Author(s):  
GEOK PEI ONG ◽  
BOO CHEONG KHOO ◽  
CARY TURANGAN ◽  
EVERT KLASEBOER ◽  
SIEW WAN FONG

Experimental observations and numerical simulations (based on the boundary element method) concerning an oscillating bubble near a flexible (thin) membrane are presented in this paper. The bubbles are created using an underwater electrical spark discharge. It is shown that the presence of a membrane can have a profound influence on the behavior of a bubble.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 435
Author(s):  
Hasna Akarni ◽  
Laila El Aarabi ◽  
Laila Mouakkir ◽  
Soumia Mordane

The aim of this work is to propose a numerical study of the interaction of a wave-horizontal plate fixed and completely immersed in a flat-bottomed tank with a uniform current flowing in the same direction as the incident wave. We investigate in particular the effect of the plate at minimizing the impact of the wave on the coast of beaches by studying the free surface elevation and the reflection coefficient, as well as the influence of the various geometrical parameters on the latter, taking into account the presence of the current. The numerical method used in this study is the boundary element method (BEM), and the results obtained will be confronted with experimental and analytical data existing in the literature.


Sign in / Sign up

Export Citation Format

Share Document