scholarly journals First comparison of LES of an offshore wind turbine wake with dual-Doppler lidar measurements in a German offshore wind farm

2015 ◽  
Vol 625 ◽  
pp. 012001 ◽  
Author(s):  
L Vollmer ◽  
M van Dooren ◽  
D Trabucchi ◽  
J Schneemann ◽  
G Steinfeld ◽  
...  
Author(s):  
Alexander Štrbac ◽  
Tanja Martini ◽  
Daniel H. Greiwe ◽  
Frauke Hoffmann ◽  
Michael Jones

AbstractThe use of offshore wind farms in Europe to provide a sustainable alternative energy source is now considered normal. Particularly in the North Sea, a large number of wind farms exist with a significant distance from the coast. This is becoming standard practice as larger areas are required to support operations. Efficient transport and monitoring of these wind farms can only be conducted using helicopters. As wind turbines continue to grow in size, there is a need to continuously update operational requirements for these helicopters, to ensure safe operations. This study assesses German regulations for flight corridors within offshore wind farms. A semi-empirical wind turbine wake model is used to generate velocity data for the research flight simulator AVES. The reference offshore wind turbine NREL 5 MW has been used and scaled to represent wind turbine of different sizes. This paper reports result from a simulation study concerning vortex wake encounter during offshore operations. The results have been obtained through piloted simulation for a transport case through a wind farm. Both subjective and objective measures are used to assess the severity of vortex wake encounters.


2017 ◽  
Vol 137 ◽  
pp. 428-442 ◽  
Author(s):  
R. Krishnamurthy ◽  
J. Reuder ◽  
B. Svardal ◽  
H.J.S. Fernando ◽  
J.B. Jakobsen

Author(s):  
Bryan Nelson ◽  
Yann Quéméner

This study evaluated, by time-domain simulations, the fatigue lives of several jacket support structures for 4 MW wind turbines distributed throughout an offshore wind farm off Taiwan’s west coast. An in-house RANS-based wind farm analysis tool, WiFa3D, has been developed to determine the effects of the wind turbine wake behaviour on the flow fields through wind farm clusters. To reduce computational cost, WiFa3D employs actuator disk models to simulate the body forces imposed on the flow field by the target wind turbines, where the actuator disk is defined by the swept region of the rotor in space, and a body force distribution representing the aerodynamic characteristics of the rotor is assigned within this virtual disk. Simulations were performed for a range of environmental conditions, which were then combined with preliminary site survey metocean data to produce a long-term statistical environment. The short-term environmental loads on the wind turbine rotors were calculated by an unsteady blade element momentum (BEM) model of the target 4 MW wind turbines. The fatigue assessment of the jacket support structure was then conducted by applying the Rainflow Counting scheme on the hot spot stresses variations, as read-out from Finite Element results, and by employing appropriate SN curves. The fatigue lives of several wind turbine support structures taken at various locations in the wind farm showed significant variations with the preliminary design condition that assumed a single wind turbine without wake disturbance from other units.


2015 ◽  
Vol 74 ◽  
pp. 406-413 ◽  
Author(s):  
Wei Shi ◽  
Jonghoon Han ◽  
Changwan Kim ◽  
Daeyong Lee ◽  
Hyunkyoung Shin ◽  
...  

2016 ◽  
Author(s):  
Amy Stidworthy ◽  
David Carruthers

Abstract. A new model, FLOWSTAR-Energy, has been developed for the practical calculation of wind farm energy production. It includes a semi-analytic model for airflow over complex surfaces (FLOWSTAR) and a wind turbine wake model that simulates wake-wake interaction by exploiting some similarities between the decay of a wind turbine wake and the dispersion of plume of passive gas emitted from an elevated source. Additional turbulence due to the wind shear at the wake edge is included and the assumption is made that wind turbines are only affected by wakes from upstream wind turbines. The model takes account of the structure of the atmospheric boundary layer, which means that the effect of atmospheric stability is included. A marine boundary layer scheme is also included to enable offshore as well as onshore sites to be modelled. FLOWSTAR-Energy has been used to model three different wind farms and the predicted energy output compared with measured data. Maps of wind speed and turbulence have also been calculated for two of the wind farms. The Tjaæreborg wind farm is an onshore site consisting of a single 2 MW wind turbine, the NoordZee offshore wind farm consists of 36 V90 VESTAS 3 MW turbines and the Nysted offshore wind farm consists of 72 Bonus 2.3 MW turbines. The NoordZee and Nysted measurement datasets include stability distribution data, which was included in the modelling. Of the two offshore wind farm datasets, the Noordzee dataset focuses on a single 5-degree wind direction sector and therefore only represents a limited number of measurements (1,284); whereas the Nysted dataset captures data for seven 5-degree wind direction sectors and represents a larger number of measurements (84,363). The best agreement between modelled and measured data was obtained with the Nysted dataset, with high correlation (0.98 or above) and low normalised mean square error (0.007 or below) for all three flow cases. The results from Tjæreborg show that the model replicates the Gaussian shape of the wake deficit two turbine diameters downstream of the turbine, but the lack of stability information in this dataset makes it difficult to draw conclusions about model performance. One of the key strengths of FLOWSTAR-Energy is its ability to model the effects of complex terrain on the airflow. However, although the airflow model has been previously compared extensively with flow data, it has so far not been used in detail to predict energy yields from wind farms in complex terrain. This will be the subject of a further validation study for FLOWSTAR-Energy.


2019 ◽  
Vol 44 (5) ◽  
pp. 455-468
Author(s):  
Xie Lubing ◽  
Rui Xiaoming ◽  
Li Shuai ◽  
Hu Xin

The maintenance costs of offshore wind turbines operated under the irregular, non-stationary conditions limit the development of offshore wind power industry. Unlike onshore wind farms, the weather conditions (wind and waves) have greater impacts on the operation and maintenance of offshore wind farm. Accessibility is a key factor related to the operation and maintenance of offshore wind turbine. Considering the impact of weather conditions on the maintenance activities, the Markov method and dynamic time window are applied to represent the weather conditions, and an index used to evaluate the maintenance accessibility is then proposed. As the wind turbine is a multi-component complex system, this article uses the opportunistic maintenance strategy to optimize the preventive maintenance age and opportunistic maintenance age for the main components of the wind turbine. Taking the minimum expectation cost as objective function, this strategy integrates the maintenance work of the key components. Finally, an offshore wind farm is taken for simulation case study of this strategy; the results showed that the maintenance cost of opportunistic maintenance strategy is 10% lower than that of the preventive maintenance strategy, verifying the effectiveness of the opportunistic maintenance.


2006 ◽  
Vol 23 (7) ◽  
pp. 888-901 ◽  
Author(s):  
R. J. Barthelmie ◽  
G. C. Larsen ◽  
S. T. Frandsen ◽  
L. Folkerts ◽  
K. Rados ◽  
...  

Abstract This paper gives an evaluation of most of the commonly used models for predicting wind speed decrease (wake) downstream of a wind turbine. The evaluation is based on six experiments where free-stream and wake wind speed profiles were measured using a ship-mounted sodar at a small offshore wind farm. The experiments were conducted at varying distances between 1.7 and 7.4 rotor diameters downstream of the wind turbine. Evaluation of the models compares the predicted and observed velocity deficits at hub height. A new method of evaluation based on determining the cumulative momentum deficit over the profiles is described. Despite the apparent simplicity of the experiments, the models give a wide range of predictions. Overall, it is not possible to establish any of the models as having individually superior performance with respect to the measurements.


Sign in / Sign up

Export Citation Format

Share Document