scholarly journals On computation of solid fuel regression rate in ramjet combustor

2017 ◽  
Vol 891 ◽  
pp. 012222 ◽  
Author(s):  
A V Razmyslov ◽  
L S Yanovskiy ◽  
P D Toktaliev
Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1784 ◽  
Author(s):  
Weixuan Li ◽  
Xiong Chen ◽  
Wenxiang Cai ◽  
Omer Musa

In this paper, the effect of sudden expansion ratio of solid fuel ramjet (SFRJ) combustor is numerically investigated with swirl flow. A computational fluid dynamics (CFD) code is written in FORTRAN to simulate the combustion and flow patterns in the combustion chamber. The connected-pipe facility is used to perform the experiment with swirl, and high-density Polyethylene (HDPE) is used as the solid fuel. The investigation is performed with different sudden expansion ratios, in which the port and inlet diameters are independently varied. The results indicated that the self-sustained combustion of the SFRJ occurs around the reattachment point at first, and then the heat released in reattachment point is used to achieve the self-sustained combustion in the redevelopment zone. The average regression rate is proportional to the sudden expansion ratio for the cases with a fixed port diameter, which is mainly dominated by the enhancement of heat transfer in backward-facing step. However, the average regression rate is inversely proportional to the sudden expansion ratio for the cases with fixed inlet diameter, which is influenced by the heat transfer mechanism of developed turbulent flow in the redevelopment zone.


Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 190
Author(s):  
Francesco Barato

Ablative-cooled hybrid rockets could potentially combine a similar versatility of a liquid propulsion system with a much simplified architecture. These characteristics make this kind of propulsion attractive, among others, for applications such as satellites and upper stages. In this paper, the use of hybrid rockets for those situations is reviewed. It is shown that, for a competitive implementation, several challenges need to be addressed, which are not the general ones often discussed in the hybrid literature. In particular, the optimal thrust to burning time ratio, which is often relatively low in liquid engines, has a deep impact on the grain geometry, that, in turn, must comply some constrains. The regression rate sometime needs to be tailored in order to avoid unreasonable grain shapes, with the consequence that the dimensional trends start to follow some sort of counter-intuitive behavior. The length to diameter ratio of the hybrid combustion chamber imposes some packaging issues in order to compact the whole propulsion system. Finally, the heat soak-back during long off phases between multiple burns could compromise the integrity of the case and of the solid fuel. Therefore, if the advantages of hybrid propulsion are to be exploited, the aspects mentioned in this paper shall be carefully considered and properly faced.


2018 ◽  
Vol 34 (6) ◽  
pp. 1519-1528
Author(s):  
Woosuk Jung ◽  
Sangwoo Jung ◽  
Taesoo Kwon ◽  
Juhyeon Park ◽  
Sejin Kwon

2022 ◽  
Author(s):  
Will C. Senior ◽  
Rohan Gejji ◽  
Robert P. Lucht ◽  
Carson D. Slabaugh

2020 ◽  
Vol 36 (6) ◽  
pp. 933-941
Author(s):  
A. M. Tahsini

ABSTRACTThe performance of the solid fuel ramjet is accurately predicted using full part simulation of this propulsion system, where the flow fields of the intake, combustion chamber, and the nozzle are numerically studied all together. The conjugate heat transfer is considered between the solid phase and the gas phase to directly compute the regression rate of the fuel. The finite volume solver of the compressible turbulent reacting flow is utilized to study the axisymmetric three dimensional flow fields, and two blocks are used to discretize the computational domain. It is shown that the combustion chamber's pressure is changed due to the fuel flow rate's increment which must be taken into account in predictions. The results demonstrate that omitting the pressure dependence of the regression rate and also the effect of the combustor's inlet profile on the regression rate, which specially exists when simulating the combustion chamber individually, under-predicts the solid fuel burning rate when the regression rate augmentation technique is applied to improve the performance of the solid fuel ramjets. It is also illustrated that using the inlet swirl to increase the regression rate of the solid fuel augments considerably the thrust level of the considered SFRJ, while the predictions without considering all parts of the ramjet is not accurate.


Sign in / Sign up

Export Citation Format

Share Document