Constructing soliton solutions and super-bilinear form of lattice supersymmetric KdV equation

2015 ◽  
Vol 48 (28) ◽  
pp. 285201 ◽  
Author(s):  
A S Carstea
2001 ◽  
Vol 522 (1-2) ◽  
pp. 189-193 ◽  
Author(s):  
Sasanka Ghosh ◽  
Debojit Sarma

2016 ◽  
Vol 27 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Zi-Jian Xiao ◽  
Bo Tian ◽  
Hui-Ling Zhen ◽  
Jun Chai ◽  
Xiao-Yu Wu

2012 ◽  
Vol 26 (15) ◽  
pp. 1250057
Author(s):  
HE LI ◽  
XIANG-HUA MENG ◽  
BO TIAN

With the coupling of a scalar field, a generalization of the nonlinear Klein–Gordon equation which arises in the relativistic quantum mechanics and field theory, i.e., the coupled nonlinear Klein–Gordon equations, is investigated via the Hirota method. With the truncated Painlevé expansion at the constant level term with two singular manifolds, the coupled nonlinear Klein–Gordon equations are transformed to a bilinear form. Starting from the bilinear form, with symbolic computation, we obtain the N-soliton solutions for the coupled nonlinear Klein–Gordon equations.


2016 ◽  
Vol 114 ◽  
pp. 192-203 ◽  
Author(s):  
Houria Triki ◽  
Turgut Ak ◽  
Seithuti Moshokoa ◽  
Anjan Biswas

1995 ◽  
Vol 10 (27) ◽  
pp. 2019-2028 ◽  
Author(s):  
J.C. BRUNELLI ◽  
ASHOK DAS

We show that the supersymmetric nonlinear Schrödinger equation is a bi-Hamiltonian integrable system. We obtain the two Hamiltonian structures of the theory from the ones of the supersymmetric two-boson hierarchy through a field redefinition. We also show how the two Hamiltonian structures of the supersymmetric KdV equation can also be derived from a Hamiltonian reduction of the supersymmetric two-boson hierarchy.


2015 ◽  
Vol 27 (04) ◽  
pp. 1550011 ◽  
Author(s):  
Partha Guha

Recently, Kupershmidt [38] presented a Lie algebraic derivation of a new sixth-order wave equation, which was proposed by Karasu-Kalkani et al. [31]. In this paper, we demonstrate that Kupershmidt's method can be interpreted as an infinite-dimensional analogue of the Euler–Poincaré–Suslov (EPS) formulation. In a finite-dimensional case, we modify Kupershmidt's deformation of the Euler top equation to obtain the standard EPS construction on SO(3). We extend Kupershmidt's infinite-dimensional construction to construct a nonholonomic deformation of a wide class of coupled KdV equations, where all these equations follow from the Euler–Poincaré–Suslov flows of the right invariant L2 metric on the semidirect product group [Formula: see text], where Diff (S1) is the group of orientation preserving diffeomorphisms on a circle. We generalize our construction to the two-component Camassa–Holm equation. We also give a derivation of a nonholonomic deformation of the N = 1 supersymmetric KdV equation, dubbed as sKdV6 equation and this method can be interpreted as an infinite-dimensional supersymmetric analogue of the Euler–Poincaré–Suslov (EPS) method.


1993 ◽  
Vol 20 (4) ◽  
pp. 493-493
Author(s):  
Zong-Yun Chen ◽  
Nian-Ning Huang

Sign in / Sign up

Export Citation Format

Share Document