Nonholonomic deformation of coupled and supersymmetric KdV equations and Euler–Poincaré–Suslov method

2015 ◽  
Vol 27 (04) ◽  
pp. 1550011 ◽  
Author(s):  
Partha Guha

Recently, Kupershmidt [38] presented a Lie algebraic derivation of a new sixth-order wave equation, which was proposed by Karasu-Kalkani et al. [31]. In this paper, we demonstrate that Kupershmidt's method can be interpreted as an infinite-dimensional analogue of the Euler–Poincaré–Suslov (EPS) formulation. In a finite-dimensional case, we modify Kupershmidt's deformation of the Euler top equation to obtain the standard EPS construction on SO(3). We extend Kupershmidt's infinite-dimensional construction to construct a nonholonomic deformation of a wide class of coupled KdV equations, where all these equations follow from the Euler–Poincaré–Suslov flows of the right invariant L2 metric on the semidirect product group [Formula: see text], where Diff (S1) is the group of orientation preserving diffeomorphisms on a circle. We generalize our construction to the two-component Camassa–Holm equation. We also give a derivation of a nonholonomic deformation of the N = 1 supersymmetric KdV equation, dubbed as sKdV6 equation and this method can be interpreted as an infinite-dimensional supersymmetric analogue of the Euler–Poincaré–Suslov (EPS) method.

2004 ◽  
Vol 2 (3) ◽  
pp. 253-265 ◽  
Author(s):  
Yacin Ameur

We give a new proof and new interpretation of Donoghue's interpolation theorem; for an intermediate Hilbert spaceH∗to be exact interpolation with respect to a regular Hilbert coupleH¯it is necessary and sufficient that the norm inH∗be representable in the form‖f‖∗=(∫[0,∞](1+t−1)K2(t,f;H¯)2dρ(t))1/2with some positive Radon measureρon the compactified half-line[0,∞]. The result was re-proved in [1] in the finite-dimensional case. The purpose of this note is to extend the proof given in [1] to cover the infinite-dimensional case. Moreover, the presentation of the aforementioned proof in [1] was slightly flawed, because we forgot to include a reference to ‘Donoghue's Lemma’, which is implicitly used in the proof. Hence we take this opportunity to correct that flaw.


2008 ◽  
Vol 05 (01) ◽  
pp. 1-16 ◽  
Author(s):  
PARTHA GUHA

We use the logarithmic 2-cocycle and the action of V ect (S1) on the space of pseudodifferential symbols to derive one particular type of supersymmetric KdV equation, known as Kuper-KdV equation. This equation was formulated by Kupershmidt and it is different from the Manin–Radul–Mathieu type equation. The two Super KdV equations behave differently under a supersymmetric transformation and Kupershmidt version does not preserve SUSY transformation. In this paper we study the second type of supersymmetric generalization of the Camassa–Holm equation correspoding to Kuper-KdV equation via standard embedding of super vector fields into the Lie algebra of graded pseudodifferential symbols. The natural lift of the action of superconformal group SDiff yields SDiff module. This method is particularly useful to construct Moyal quantized systems.


2020 ◽  
Vol 89 (1) ◽  
pp. 014002 ◽  
Author(s):  
Swapan Biswas ◽  
Uttam Ghosh ◽  
Susmita Sarkar ◽  
Shantanu Das

1976 ◽  
Vol 28 (1) ◽  
pp. 174-180 ◽  
Author(s):  
Stephen Berman

A well known result in the theory of Lie algebras, due to H. Zassenhaus, states that if is a finite dimensional Lie algebra over the field K such that the killing form of is non-degenerate, then the derivations of are all inner, [3, p. 74]. In particular, this applies to the finite dimensional split simple Lie algebras over fields of characteristic zero. In this paper we extend this result to a class of Lie algebras which generalize the split simple Lie algebras, and which are defined by Cartan matrices (for a definition see § 1). Because of the fact that the algebras we consider are usually infinite dimensional, the method we employ in our investigation is quite different from the standard one used in the finite dimensional case, and makes no reference to any associative bilinear form on the algebras.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Tejas Kotwal ◽  
Roshail Gerard ◽  
Ravi Banavar

In a series of papers, Chang et al. proved and experimentally demonstrated a phenomenon in underactuated mechanical systems, that they termed “damping-induced self-recovery.” This paper further investigates a few features observed in these demonstrated experiments and provides additional theoretical interpretation for the same. In particular, we present a model for the infinite-dimensional fluid–stool–wheel system, that approximates its dynamics to that of the better understood finite dimensional case, and comment on the effect of the intervening fluid on the large amplitude oscillations observed in the bicycle wheel–stool experiment.


2005 ◽  
Vol 77 (4) ◽  
pp. 589-594 ◽  
Author(s):  
Paolo Piccione ◽  
Daniel V. Tausk

We prove that any countable family of Lagrangian subspaces of a symplectic Hilbert space admits a common complementary Lagrangian. The proof of this puzzling result, which is not totally elementary also in the finite dimensional case, is obtained as an application of the spectral theorem for unbounded self-adjoint operators.


1995 ◽  
Vol 38 (1) ◽  
pp. 63-76 ◽  
Author(s):  
B. A. F. Wehrfritz

Let V be a left vector space over the arbitrary division ring D and G a locally nilpotent group of finitary automorphisms of V (automorphisms g of V such that dimDV(g-1)<∞) such that V is irreducible as D-G bimodule. If V is infinite dimensional we show that such groups are very rare, much rarer than in the finite-dimensional case. For example we show that if dimDV is infinite then dimDV = |G| = ℵ0 and G is a locally finite q-group for some prime q ≠ char D. Moreover G is isomorphic to a finitary linear group over a field. Examples show that infinite-dimensional such groups G do exist. Note also that there exist examples of finite-dimensional such groups G that are not isomorphic to any finitary linear group over a field. Generally the finite-dimensional examples are more varied.


Open Physics ◽  
2011 ◽  
Vol 9 (3) ◽  
Author(s):  
Abdul-Majid Wazwaz

AbstractThe integrability of coupled KdV equations is examined. The simplified form of Hirota’s bilinear method is used to achieve this goal. Multiple-soliton solutions and multiple singular soliton solutions are formally derived for each coupled KdV equation. The resonance phenomenon of each model will be examined.


2017 ◽  
Vol 20 (10) ◽  
pp. 74-83
Author(s):  
V.L. Pasikov

For conflict operated differential system with delay studying of dynamic game of convergence - evasion relatively functional goal set, now regarding evasion and solution of a problem of existence of alternative in the case under consideration is continued. In the work realization of condition of saddle point relatively to the right part of operated system is not supposed. Earlier similar tasks were set and solved for finite-dimensional space at scientific school of the academicianN.N. Krasovsky. For a case of infinite-dimensional space of continuous functions similar tasks were considered by the author. In the suggested work at theorem proving about convergence - evasion, the norm of Hilbert space is used.


Author(s):  
HENRIK PETERSSON

A classical result states that, in n variables, the space of the entire functionals can be identified with the space of exponential type functions via the Fourier–Borel transform. Thus, in this way the spaces of the entire and exponential type functions can be put in duality, the Martineau duality. We give a proof that the entire functionals, on the countable direct product and direct sum of the field of complex numbers, can be identified with exponential type functions in the same way. In other words, we show that the infinite dimensional Fourier–Borel transform defines Martineau dualities analogous to the finite dimensional case.


Sign in / Sign up

Export Citation Format

Share Document