scholarly journals Dynamic Response and Perturbation Design of Surrounding Rock in Blasting Construction of Small Radius Spiral Tunnel

Author(s):  
Z B Fang ◽  
Q Yan ◽  
X D Sun ◽  
D Fu ◽  
X X Zhang ◽  
...  
Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2893
Author(s):  
Jinfei Chai

Based on the basic principle of thermodynamics, an elastoplastic damage constitutive model of concrete is constructed in this paper. The model is realized and verified in FLAC3D, which provides a solid foundation for the study of dynamic response and fatigue damage to the base structure of a heavy haul railway tunnel. The dynamic response and damage distribution of the base structure of a heavy-duty railway tunnel with defects were numerically simulated by the concrete elastic-plastic damage constitutive model. Then, by analyzing the response characteristics of the tunnel basement structure under different surrounding rock softening degrees, different foundation suspension range and different foundation structure damage degree are determined. The results show the following: (1) The elastoplastic damage constitutive model of concrete can well describe the stress–strain relationship of materials, especially with the simulation results of post peak softening being in good agreement with the test results, and the simulation effect of the unloading–reloading process of the cyclic loading and unloading test also meet the requirements. (2) The initial stress field and dynamic response of the tunnel basement structure under the action of train vibration load are very different from the ideal state of the structure design when the surrounding rock of the base is softened, the base is suspended, or the basement structure is damaged. With the surrounding rock softening, basement hanging, or basement structure damage developing to a certain extent, the basement structure will be damaged. (3) The horizontal dynamic stress amplitude increases with the increase in the softening degree of the basement surrounding rock. The horizontal dynamic stress of the measuring point increases with the increase in the width of the hanging out area when the hanging out area is located directly below the loading line. When the degree of damage to the basement structure is aggravated, the horizontal dynamic tensile stress of each measuring point gradually decreases. (4) The maximum principal stress increment increases with the increase in the fracture degree of the basement structure, while the minimum principal stress increment decreases with the increase in the fracture degree of the basement structure, but the variation range of the large and minimum principal stress increments is small. The research results have important theoretical and practical significance for further analysis of the damage mechanism and control technology of the foundation structure of a heavy haul railway tunnel with defects.


2011 ◽  
Vol 90-93 ◽  
pp. 2301-2306
Author(s):  
Zheng Guo Zhu ◽  
Ming Lei Sun ◽  
Yong Quan Zhu ◽  
Xing Liang Sun

In accordance with characteristics of super-small-distance tunnels in Nanjing metro, the peak value distribution of vibration velocity for existing tunnel was investigated when cut-hole blasted under the conditions of different surrounding rock Grades, followed by dynamic response rule of super-small-distance tunnels blasting. In addition, monitoring emphasis should be placed on upper bench for right tunnel blasting. Therefore, controlled measures of the small-distance tunnels were obtained during construction. Not only is the result fit for the metro tunnel, but it can be as reference for similar engineering.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xian Du ◽  
Qinghua Xiao ◽  
Congming Li ◽  
Qiang Xiong ◽  
Jianyou Yu

In recent years, with the increasement of the railway expansion projects, the blasting damage has caused great threat to the safety of the existing tunnel structure. However, few researches are carried out on the influence of tunnel blasting construction on existing small-angle crossing tunnel structure. In this study, the dynamic response of existing tunnel structure to the blasting activities in newly built tunnel is analyzed by numerical simulation. From the comparison of vibration velocity, lining stress, and the displacement of the existing tunnel structure, the blasting methods, surrounding rock condition, cross angle, and clear distance are proven to be the highly correlated factors for the dynamic response of the existing tunnel to blasting. Then, combined with the analytic hierarchy process, the vibration velocity is selected as the optimal index to indicate the dynamic response to blasting activities.


Author(s):  
Edward Seckel ◽  
Ian A. M. Hall ◽  
Duane T. McRuer ◽  
David H. Weir
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document