tunnel blasting
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 41)

H-INDEX

8
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jianxin Yu ◽  
Zhibin Zhou ◽  
Xin Zhang ◽  
Xiaolin Yang ◽  
Jinxing Wang ◽  
...  

The vibration caused by the tunnel blasting and excavation will harm the surrounding rock and lining structure of the adjacent existing tunnels. This paper takes a two-lane large-span highway tunnel as the research object, conducts on-site monitoring tests on the impact of vibration caused by the blasting and excavation of new tunnels on the existing tunnels under different blasting schemes, and analyses in detail the three-dimension vibration velocity by different excavation footages. From the vibration speed, it is concluded that the influence of the existing tunnel of the newly built tunnel blasting team is affected by various factors, such as distance, free surface, charge, and blasthole distribution. With different blasting schemes, the greater the amount of charge, the greater the vibration caused by blasting. Existing tunnels correspond to the front of the tunnel, and the axial and radial vibration peaks are greater than the vertical. Although the cut segment uses a less amount of explosive and has a less blasthole layout, there is only one free surface. Because of the clamping of the rock, it is compared with the other two segments. The vibration caused is the largest. Although the peripheral holes are filled with a large amount of explosive, the arrangement of the blast holes is relatively scattered and there are many free surfaces. Hence, the vibration caused is the smallest. Corresponding to the back of the tunnel face, since there is no rock clamp, the vibration caused by the cut segment is the smallest, and the vibration caused by the peripheral segment and the floor segment is relatively large. The vibration caused by the front explosion side is significantly greater than the vibration caused by the back explosion side. The vibration velocity caused by the unit charge of 1.5 m footage is greater than that of the 3.0 m footage. The vibration velocity caused by the unit charge of the cut segment is the largest, and the vibration velocity caused by the peripheral segment and the floor segment is smaller. The research results provide a reference for the blasting control of similar engineering construction.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xian Du ◽  
Qinghua Xiao ◽  
Congming Li ◽  
Qiang Xiong ◽  
Jianyou Yu

In recent years, with the increasement of the railway expansion projects, the blasting damage has caused great threat to the safety of the existing tunnel structure. However, few researches are carried out on the influence of tunnel blasting construction on existing small-angle crossing tunnel structure. In this study, the dynamic response of existing tunnel structure to the blasting activities in newly built tunnel is analyzed by numerical simulation. From the comparison of vibration velocity, lining stress, and the displacement of the existing tunnel structure, the blasting methods, surrounding rock condition, cross angle, and clear distance are proven to be the highly correlated factors for the dynamic response of the existing tunnel to blasting. Then, combined with the analytic hierarchy process, the vibration velocity is selected as the optimal index to indicate the dynamic response to blasting activities.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wenle Gao ◽  
Zhicheng Liu ◽  
Yanping Wang ◽  
Zhenwei Yan ◽  
Zehua Zhang

Relying on the entrance section of a high-speed railway tunnel blasting project, the fluid-solid coupling algorithm based on ANSYS/LS-DYNA was used to optimize the parameters of wedge cut blasting, and the vibration could be reduced on the basis of ensuring the blasting effect. Through the combination of visual numerical simulation results and rock-breaking mechanism of wedge cut blasting, the maximum vibration velocity of different monitoring points in the model under different segmented time delay was analyzed. The results show that the best method for detonation is dividing the blastholes into three segments from upper to lower and dividing the left and right symmetrical blastholes into one segment. When the delay time is 10 ms, the average vibration reduction ratio is the best, which is reduced by 18% compared with the six-hole simultaneous blasting. In addition, the actual surrounding rock stress has a clamping effect on the cut blasting area. The wedge cut blasting footage obtained by numerical simulation was basically consistent with the field results, which proved that the model is reasonable and effective. This study intuitively and accurately demonstrated the process of cut blasting, the superposition curve of vibration velocity and the vibration reduction results under different delay times, and the effect of cut blasting. The results can be directly applied to similar projects, and the optimal blasting parameters and related issues can be solved more accurately with the help of this engineering analysis method.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Bo Wu ◽  
Pingting Liu ◽  
Wei Huang ◽  
Guowang Meng

Fragile ancient buildings are recognized as an eloquent testimony to human civilization, and their safety should arouse more attention. According to the special case of adjacent blasting construction, the assessment model should be essentially built to assess the effect of tunnel blasting on the safety of the ancient buildings. To analyze the structural safety of ancient buildings under blasting vibration and to protect the precious ancient buildings, a risk assessment model of ancient buildings with 20 relevant assessment indexes was initiatively built in this study. To be specific, the relative factors of blasting, the factors of ancient buildings, and other factors (e.g., religion) were comprehensively considered in the model. Subsequently, the risk level and weight were calculated more systematically and quantitatively by adopting the optimized optimal comprehensive method integrating the G1 method and the entropy method. Lastly, the overall risk value was determined by applying the fuzzy gray method. Afterward, the value was adopted to assess the safety of the Asoka Temple, the only existing temple named after the Indian King Asoka in China, as an attempt to verify the feasibility of this model. Besides, the Asoka tunnel was around it. As demonstrated from the results, the age of the buildings maximally impacted the safety of ancient buildings, and the safety level of the Asoka Temple was “relatively safe.” The present study built an effective model to assess the safety of ancient buildings under adjacent subway blasting construction, which could help improve the efficiency and accuracy of assessments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Baoxin Jia ◽  
Linli Zhou ◽  
Jiaojiao Cui ◽  
Hao Chen

AbstractIn tunnel blasting excavation, it is important to clarify the attenuation law of blast wave propagation and predict the blast vibration velocity effectively to ensure safe tunnel construction and protection design. The effects of the free surface area its quantity on the blast vibration velocity are considered, and free surface parameters are introduced to improve the existing blast vibration velocity prediction formula. Based on the Tianhuan railway Daqianshiling tunnel project, field blast vibration monitoring tests are performed to determine changes in the peak blasting vibration velocity based on the blast distance and free surface area. LS-DYNA is used to establish tunnel blasting excavation models under three operating conditions; subsequently, the attenuation law of blast vibration velocity and changes in the vibration response spectrum are analysed. Results show that the free surface area and number of free surfaces enable the blast vibration velocity to be predicted under various operating conditions: a smaller free surface area results in a narrower frequency band range, whereas more free surfaces result in a narrower frequency band range. The improved blast vibration velocity prediction formula is validated using field and numerical test data. It is indicated that the improved formula is applicable to various tunnelling conditions.


Sign in / Sign up

Export Citation Format

Share Document