scholarly journals On application of seismic reflection method in investigation of urban underground active faults: A case study in Jiangdong New District of Haikou in Hainan Province, China

2021 ◽  
Vol 660 (1) ◽  
pp. 012035
Author(s):  
Limin Wang ◽  
Chao Chen ◽  
Jiangping Liu ◽  
Linsong Wang ◽  
Zhengwang Hu ◽  
...  
2020 ◽  
Vol 12 (1) ◽  
pp. 174-189
Author(s):  
Fansong Meng ◽  
Gang Zhang ◽  
Yaping Qi ◽  
Yadong Zhou ◽  
Xueqin Zhao ◽  
...  

AbstractPingwu County, which is located at the northern end of the Longmenshan fault structural belt, has an active regional geological structure. For a long time, the Longmenshan fault tectonic belt has become intensely active with frequent earthquakes. According to the existing geological data, the Pingwu–Qingchuan fault passes through the urban area of Pingwu. However, because of the great changes in the original landform of Pingwu caused by the construction activities in this urban area, a precise judgment of the location of the Pingwu–Qingchuan fault according to the new landform characteristics is difficult. Here, the seismic reflection method, electrical resistivity tomography (ERT), and drilling method were used to determine the accurate location of the buried active faults in Pingwu County. The seismic reflection method and ERT are used to determine the location of faults, the thickness of overlying strata of the fault, and the basic characteristics of faults. The drilling data can be used to divide the bedrock lithology and confirm the geophysical results. The geological model of the faults can be constructed by 3D inversion of ERT, and the structural characteristics of the faults can be viewed intuitively. The results of this study can provide a basis for earthquake prevention and construction work in Pingwu. The finding also shows that seismic reflection method and ERT can effectively explore buried active faults in urban areas, where many sources of interferences may exist.


2008 ◽  
Author(s):  
Shunichiro Ito ◽  
Takao Aizawa ◽  
Fumio Nakada ◽  
Ryosuke Kitamura

1988 ◽  
Vol 59 (4) ◽  
pp. 141-150 ◽  
Author(s):  
John. L. Sexton

Abstract An important aspect of seismogenesis concerns the role of preexisting faults and other structural features as preferred zones of weakness in determining the pattern of strain accumulation and seismicity. Reactivation of zones of weakness by present day stress fields may be the cause of many intraplate earthquakes. To understand the relation between reactivated structures and seismicity, it is necessary to identify structures which are properly oriented with respect to the present-day stress field so that reactivation can occur. The seismic reflection method is very useful for identifying and delineating structures, particularly in areas where the structures are buried as in the New Madrid seismic zone. Application of the seismic reflection method in widely separated locations within the New Madrid rift complex has resulted in successful detection and delineation of reactivated rift-related structures which are believed to be associated with earthquake activity. The purpose of this paper is to discuss results from seismic reflection profiling in the New Madrid rift complex. Reflection data from several surveys including USGS Vibroseis* surveys in the Reelfoot rift area reveal reactivated faults and other deep rift-related structures which appear to be associated with seismicity. High-resolution explosive and Mini-Sosie** reflection surveys on Reelfoot scarp and through the town of Cottonwood Grove, Tennessee, clearly show reverse faults in Paleozoic and younger rocks which have been reactivated to offset younger rocks. A Vibroseis survey in the Wabash Valley area of the New Madrid rift complex provides direct evidence for a few hundred feet of post-Pennsylvanian age reactivation of large-offset normal faults in Precambrian-age basement rocks. Several earthquake epicenters have been located in the vicinity of these structures. In the Rough Creek graben, Vibroseis reflection data provide clear evidence for reactivation of basement faults. The success of these reflection surveys shows that well-planned seismic reflection surveys must be included in any program seeking to determine the relationship between preexisting zones of weakness and seismicity of an area.


1976 ◽  
Vol 16 (74) ◽  
pp. 73-88 ◽  
Author(s):  
Gilbert Dewart

AbstractIt appears to be possible to identify certain conditions of thermal regime at the base of a glacier through the seismic reflection method. In some cases layers of water or wet rock debris may be identifiable. The procedure is based upon the reversal of phase of reflected dilatational waves at the interface between ice and a substratum of lower acoustic impedance. Illustrations of the method are given from the west Antarctic ice sheet, and suggestions are made for the improvement of the technique.


Sign in / Sign up

Export Citation Format

Share Document