scholarly journals Effects of Biochar on the Soil Carbon Cycle in Agroecosystems: An Promising Way to Increase the Carbon Pool in Dryland

2021 ◽  
Vol 693 (1) ◽  
pp. 012082
Author(s):  
Mengying Li ◽  
Youcai Xiong ◽  
Liqun Cai
Keyword(s):  
2013 ◽  
Vol 6 (1) ◽  
pp. 29-44 ◽  
Author(s):  
Y. Y. Yu ◽  
P. A. Finke ◽  
H. B. Wu ◽  
Z. T. Guo

Abstract. To accurately estimate past terrestrial carbon pools is the key to understanding the global carbon cycle and its relationship with the climate system. SoilGen2 is a useful tool to obtain aspects of soil properties (including carbon content) by simulating soil formation processes; thus it offers an opportunity for both past soil carbon pool reconstruction and future carbon pool prediction. In order to apply it to various environmental conditions, parameters related to carbon cycle process in SoilGen2 are calibrated based on six soil pedons from two typical loess deposition regions (Belgium and China). Sensitivity analysis using the Morris method shows that decomposition rate of humus (kHUM), fraction of incoming plant material as leaf litter (frecto) and decomposition rate of resistant plant material (kRPM) are the three most sensitive parameters that would cause the greatest uncertainty in simulated change of soil organic carbon in both regions. According to the principle of minimizing the difference between simulated and measured organic carbon by comparing quality indices, the suited values of kHUM, (frecto and kRPM in the model are deduced step by step and validated for independent soil pedons. The difference of calibrated parameters between Belgium and China may be attributed to their different vegetation types and climate conditions. This calibrated model allows more accurate simulation of carbon change in the whole pedon and has potential for future modeling of carbon cycle over long timescales.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Hong Wei ◽  
Xiuling Man

The change of litter input can affect soil respiration (Rs) by influencing the availability of soil organic carbon and nutrients, regulating soil microenvironments, thus resulting in a profound influence on soil carbon cycle of the forest ecosystem. We conducted an aboveground litterfall manipulation experiment in different-aged Betula platyphylla forests (25-, 40- and 61-year-old) of the permafrost region, located in the northeast of China, during May to October in 2018, with each stand treated with doubling litter (litter addition, DL), litter exclusion (no-litter, NL) and control litter (CK). Our results indicated that Rs decreased under NL treatment compared with CK treatment. The effect size lessened with the increase in the stand age; the greatest reduction was found for young Betula platyphylla forest (24.46% for 25-year-old stand) and tended to stabilize with the growth of forest with the reduction of 15.65% and 15.23% for 40-and 61- year-old stands, respectively. Meanwhile, under DL treatment, Rs increased by 27.38%, 23.83% and 23.58% on 25-, 40- and 61-year-old stands, respectively. Our results also showed that the increase caused by DL treatment was larger than the reduction caused by NL treatment, leading to a priming effect, especially on 40- and 61-year-old stands. The change in litter input was the principal factor affecting the change of Rs under litter manipulation. The soil temperature was also a main factor affecting the contribution rate of litter to Rs of different-aged stands, which had a significant positive exponential correlation with Rs. This suggests that there is a significant relationship between litter and Rs, which consequently influences the soil carbon cycle in Betula platyphylla forests of the permafrost region, Northeast China. Our finding indicated the increased litter enhanced the Rs in Betula platyphylla forest, which may consequently increase the carbon emission in a warming climate in the future. It is of great importance for future forest management in the permafrost region, Northeast China.


2009 ◽  
Vol 97 (5) ◽  
pp. 840-850 ◽  
Author(s):  
F. Stuart Chapin III ◽  
Jack McFarland ◽  
A. David McGuire ◽  
Eugenie S. Euskirchen ◽  
Roger W. Ruess ◽  
...  

2009 ◽  
Vol 41 (2) ◽  
pp. 357-366 ◽  
Author(s):  
Catherine E. Stewart ◽  
Keith Paustian ◽  
Richard T. Conant ◽  
Alain F. Plante ◽  
Johan Six

Sign in / Sign up

Export Citation Format

Share Document