scholarly journals Glacier Changes in the West Kunlun Mountains Revealed by Landsat Data from 1994 to 2016

Author(s):  
J Zhang ◽  
B H Fu ◽  
L M Wang ◽  
A Maimaiti ◽  
Y X Ma ◽  
...  
2001 ◽  
Vol 4 (4) ◽  
pp. 843-844 ◽  
Author(s):  
Wang Zong-Qi ◽  
Chun-Fa Jiang ◽  
Quan-Ren Yan ◽  
Zhen Yan

2019 ◽  
Vol 159 ◽  
pp. 71-85 ◽  
Author(s):  
Shenghai Li ◽  
Tandong Yao ◽  
Wusheng Yu ◽  
Wei Yang ◽  
Meilin Zhu

Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2246 ◽  
Author(s):  
Ma ◽  
Yan ◽  
Zhao ◽  
Kundzewicz

In recent years, the climate in the arid region of Northwest China has become warmer and wetter; however, glaciers in the north slope of the West Kunlun Mountains (NSWKM) show no obvious recession, and river flow is decreasing or stable. This contrasts with the prevalent response of glaciers to climate change, which is recession and initial increase in glacier discharge followed by decline as retreat continues. We comparatively analyzed multi-timescale variation in temperature–precipitation–snow cover-runoff in the Yarkant River Basin (YRK), Karakax River Basin (KRK), Yurungkax River Basin (YUK), and Keriya River Basin (KRY) in the NSWKM. The Mann–Kendall trend and the mutation–detection method were applied to data obtained from an observation station over the last 60 years (1957–2017) and MODIS snow data (2001–2016). NSWKM temperature and precipitation have continued to increase for nearly 60 years at a mean rate of 0.26 °C/decade and 5.50 mm/decade, respectively, with the most obvious trend (R2 > 0.82) attributed to the KRK and YUK. Regarding changes in the average snow-cover fraction (SCF): YUK (SCF = 44.14%) > YRK (SCF = 38.73%) > KRY (SCF = 33.42%) > KRK (SCF = 33.40%). Between them, the YRK and YUK had decreasing SCA values (slope < −15.39), while the KRK and KRY had increasing SCA values (slope > 1.87). In seasonal variation, the SCF of the three of the basins reaches the maximum value in spring, with the most significant performance in YUK (SCF = 26.4%), except for YRK where SCF in spring was lower than that in winter (−2.6%). The runoff depth of all river basins presented an increasing trend, with the greatest value appearing in the YRK (5.78 mm/decade), and the least value in the YUK (1.58 mm/decade). With the runoff response to climate change, temperature was the main influencing factor of annual and monthly (summer) runoff variations in the YRK, which is consistent with the runoff-generation rule of rivers in arid areas, which mainly rely on ice and snow melt for water supply. However, this rule was not consistent for the YUK and KRK, as it was disturbed by other factors (e.g., slope and slope direction) during runoff generation, resulting in disruptions of their relationship with runoff. This research promotes the study of the response of cold and arid alpine regions to global change and thus better serve regional water resources management.


1992 ◽  
Vol 16 ◽  
pp. 79-84 ◽  
Author(s):  
Liu Chaohai ◽  
Li Shijie ◽  
Shi Yafeng

There appear to have been several important glacial advances on the southern slope of the west Kunlun mountains, Tibetan Plateau, since 45 000 a BP. Based on the record of alternating till and lacustrine sediments and 14C determinations, these advances are dated to 23 000–16 000, 8500–8000, and 4000–2500 a BP, and to the 16th–19th century AD, with regional variations occurring during each of the advances. The glaciation of 23 000–16 000 a BP is equivalent to the last glacial maximum (LGM) and its scope and scale were much larger than any of the others. Lake changes are a response to both tectonic uplift of the plateau and global climatic change. With regard to the latter, both changes in precipitation and changes in the extent of glaciation can affect lake levels. High lake levels occurred during interstadial conditions between 40 000 and 30 000 a BP, when the area experienced a relatively warm and humid climate, and during the LGM, between 21 000 and 15 000 a BP. During the Holocene, lakes have been shrinking gradually, coincident with the dry climate of this period of time.


1992 ◽  
Vol 16 ◽  
pp. 79-84 ◽  
Author(s):  
Liu Chaohai ◽  
Li Shijie ◽  
Shi Yafeng

There appear to have been several important glacial advances on the southern slope of the west Kunlun mountains, Tibetan Plateau, since 45 000 a BP. Based on the record of alternating till and lacustrine sediments and 14C determinations, these advances are dated to 23 000–16 000, 8500–8000, and 4000–2500 a BP, and to the 16th–19th century AD, with regional variations occurring during each of the advances. The glaciation of 23 000–16 000 a BP is equivalent to the last glacial maximum (LGM) and its scope and scale were much larger than any of the others.Lake changes are a response to both tectonic uplift of the plateau and global climatic change. With regard to the latter, both changes in precipitation and changes in the extent of glaciation can affect lake levels. High lake levels occurred during interstadial conditions between 40 000 and 30 000 a BP, when the area experienced a relatively warm and humid climate, and during the LGM, between 21 000 and 15 000 a BP. During the Holocene, lakes have been shrinking gradually, coincident with the dry climate of this period of time.


2010 ◽  
Vol 7 (2) ◽  
pp. 133-145 ◽  
Author(s):  
Fei Xiao ◽  
Feng Ling ◽  
Yun Du ◽  
Huaiping Xue ◽  
Shengjun Wu

2010 ◽  
Vol 78 (4) ◽  
pp. 912-920
Author(s):  
ZHANG Zhaochong ◽  
XIAO Xuchang ◽  
WANG Jun ◽  
WANG Yong ◽  
LUO Zhaohua

Sign in / Sign up

Export Citation Format

Share Document