ice cap
Recently Published Documents


TOTAL DOCUMENTS

1361
(FIVE YEARS 159)

H-INDEX

62
(FIVE YEARS 6)

2022 ◽  
Vol 269 ◽  
pp. 112805
Author(s):  
Ashley Morris ◽  
Geir Moholdt ◽  
Laurence Gray ◽  
Thomas Vikhamar Schuler ◽  
Trond Eiken

2022 ◽  
Author(s):  
Qi Liang ◽  
Wanxin Xiao ◽  
Ian Howat ◽  
Xiao Cheng ◽  
Fengming Hui ◽  
...  

Abstract. The generation, transport, storage and drainage of meltwater beneath the ice sheet play important roles in the Greenland ice sheet (GrIS) system. Active subglacial lakes, common features in Antarctica, have recently been detected beneath GrIS and may impact ice sheet hydrology. Despite their potential importance, few repeat subglacial lake filling and drainage events have been identified under Greenland Ice Sheet. Here we examine the surface elevation change of a collapse basin at the Flade Isblink ice cap, northeast Greenland, which formed due to sudden subglacial lake drainage in 2011. We estimate the subglacial lake volume evolution using multi-temporal ArcticDEM data and ICESat-2 altimetry data acquired between 2012 and 2021. Our long-term observations show that the subglacial lake was continuously filled by surface meltwater, with basin surface rising by up to 55 m during 2012–2021 and we estimate 138.2 × 106 m3 of meltwater was transported into the subglacial lake between 2012 and 2017. A second rapid drainage event occurred in late August 2019, which induced an abrupt ice dynamic response. Comparison between the two drainage events shows that the 2019 drainage released much less water than the 2011 event. We conclude that multiple factors, e.g., the volume of water stored in the subglacial lake and bedrock relief, regulate the episodic filling and drainage of the lake. By comparing the surface meltwater production and the subglacial lake volume change, we find only ~64 % of the surface meltwater successfully descended to the bed, suggesting potential processes such as meltwater refreezing and firn aquifer storage, need to be further quantified.


Boreas ◽  
2021 ◽  
Author(s):  
Carl Regnéll ◽  
Jason P. Briner ◽  
Haflidi Haflidason ◽  
Jan Mangerud ◽  
John Inge Svendsen

Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 433
Author(s):  
Bo Li ◽  
Zongyu Yue ◽  
Shaojie Qu ◽  
Peiwen Yao ◽  
Xiaohui Fu ◽  
...  

Dust storms, observed in all seasons, are among the most momentous of Mars’ atmospheric activities. The Entry–Descent–Landing (EDL) activity of a Martian landing mission is influenced by local atmospheric conditions, especially the probability of dust storm activity. Chryse Planitia, featuring many of the largest and most prominent outflow channels and possible mud volcanoes, is an important target site for current and future Mars landing missions. It is of great significance to understand that a Mars landing probe may encounter a dust storm situation during EDL season in the Chryse Planitia. In this study, based on four Martian years, Mars Orbiter Camera (MOC) Mars Daily Global Maps (MDGMs), 1172 dust storms were identified within Chryse’s 1600 km-radius ring. Secondly, the daily mean dust storm probability was calculated, binned by 1° of solar longitude in the Chryse landing area. The two active periods of dust storm activity are Ls = 177–239° and Ls = 288–4°, with an average daily mean dust storm probability of 9.5% and 4.1%. Dust storm activity frequency is closely interrelated with the seasonal ebb and flow of the north polar ice cap; consequently, most dust storms occur in either the cap’s growth or recession phase. We divided the Chryse landing area into square grids of 0.5° and computed the average probability of dust storm occurrence in each grid, which ranged from 0.19% to 2.42%, with an average of 1.22%. The dust storm activity probability in space was also inhomogeneous—low in the west and south but high in the east and north—which was mainly affected by the origin and the path of dust storm sequences. Based on empirical orthogonal function (EOF) analysis of storms in the Chryse area, 40.5% are cap-edge storms in the northern hemisphere. Finally, we concluded that the preferred time of a Mars landing mission is Ls = 18–65° in the Chryse Planitia, and three preferred landing areas were selected with low dust storm probability.


2021 ◽  
Author(s):  
Whyjay Zheng

Abstract. Basal conditions directly control the glacier sliding rate and the dynamic discharge of ice flow. Recent glacier destabilization events indicate that some marine-terminating glaciers quickly respond to lubricated beds with increased flow speed, but the underlying physics, especially how this vulnerability relates to glacier geometry and flow characteristics, remains unclear. This paper presents a 1-D physical framework for glacier dynamic vulnerability assuming sudden basal lubrication as an initial perturbation. In this new model, two quantities determine the scale and the areal extent of the subsequent thinning and acceleration after the bed is lubricated: Péclet number (Pe) and the product of glacier speed and thickness gradient (dubbed J0 in this study). To validate the model, this paper calculates Pe and J0 using multi-sourced data from 1996–1998 for outlet glaciers in Greenland and Austfonna Ice Cap, Svalbard, and compares the results with the glacier speed change during 1996/1998–2018. Glaciers with lower Pe and J0 are more likely to accelerate during this 20-year span than those with higher Pe and J0, which matches the model prediction. A combined factor of ice thickness, surface slope, and initial speed for ice flow physically determines how much and how fast glaciers respond to lubricated beds, as forms of speed, elevation, and terminus change.


2021 ◽  
Author(s):  
Chao Yue ◽  
Louise Steffensen Schmidt ◽  
Liyun Zhao ◽  
Michael Wolovick ◽  
John C. Moore

Abstract. Geoengineering by stratospheric aerosol injection (SAI) may reduce the mass loss from Vatnajökull ice cap (VIC), Iceland, by slowing surface temperature rise, despite relative increases in ocean heat flux brought by the Atlantic Meridional Circulation (AMOC). Although surface mass balance (SMB) is affected by the local climate, the sea level contribution is also dependent on ice dynamics. We use the Parallel Ice Sheet Model (PISM) to estimate the VIC mass balance under the CMIP5 (Coupled Model Intercomparison Project Phase 5) RCP4.5, 8.5 and GeoMIP (Geoengineering Model Intercomparison Project) G4 SAI scenarios during the period 1982–2089. The G4 scenario is based on the RCP4.5, but with additional 5 Tg yr−1 of SO2 injection to the lower stratosphere. By 2089, G4 reduces VIC mass loss from 16 % lost under RCP4.5, to 12 %. Ice dynamics are important for ice cap loss rates, increasing mass loss for RCP4.5 and G4 by 1/4 to 1/3 compared with excluding ice dynamics, but making no difference to mass loss difference under the scenarios. We find that VIC dynamics are remarkably insensitive to climate forcing partly because of AMOC compensation to SMB and low rates of iceberg calving making ocean forcing close to negligible. But the exceptionally high geothermal heat flow under parts of the ice cap which produces correspondingly high basal melt rates means that surface forcing changes are relatively less important than for glaciers with lower geothermal heat flow.


2021 ◽  
Author(s):  
Chao Yue ◽  
Louise Steffensen Schmidt ◽  
Liyun Zhao ◽  
Michael Wolovick ◽  
John C. Moore

Geosciences ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 428
Author(s):  
Kirstin Hoffmann-Abdi ◽  
Francisco Fernandoy ◽  
Hanno Meyer ◽  
Johannes Freitag ◽  
Thomas Opel ◽  
...  

High-accumulation sites are crucial for understanding the patterns and mechanisms of climate and environmental change in Antarctica since they allow gaining high-resolution proxy records from firn and ice. Here, we present new glacio- and isotope-geochemical data at sub-annual resolution from a firn core retrieved from an ice cap on Plateau Laclavere (LCL), northern Antarctic Peninsula, covering the period 2012–2015. The signals of two volcanic eruptions and two forest fire events in South America could be identified in the non-sea-salt sulphur and black carbon records, respectively. Mean annual snow accumulation on LCL amounts to 2500 kg m−2 a−1 and exhibits low inter-annual variability. Time series of δ18O, δD and d excess show no seasonal cyclicity, which may result from (1) a reduced annual temperature amplitude due to the maritime climate and (2) post-depositional processes. The firn core stratigraphy indicates strong surface melt on LCL during austral summers 2013 and 2015, likely related to large-scale warm-air advection from lower latitudes and temporal variations in sea ice extent in the Bellingshausen-Amundsen Sea. The LCL ice cap is a highly valuable natural archive since it captures regional meteorological and environmental signals as well as their connection to the South American continent.


2021 ◽  
Vol 23 (Supplement_4) ◽  
pp. iv10-iv10
Author(s):  
Crescens Tiu ◽  
Liam Welsh ◽  
Timothy Jones ◽  
Anna Zachariou ◽  
Toby Prout ◽  
...  

Abstract Aims Despite improved understanding of effector T-cell trafficking into the central nervous system, initial trials with anti-PD1/PD-L1 immune checkpoint inhibitors (ICIs) have failed to meet their primary endpoints. PTEN loss of function is frequent in GBM and has been correlated with not only poor overall prognosis, but also impaired antitumour responses, including reduced T cell infiltration into tumour and reduced efficacy of ICIs. Ipatasertib is a novel, potent, selective, small-molecule inhibitor of Akt. We have shown that Ipatasertib efficiently depletes FOXP3+ regulatory T cells from the tumour microenvironment (TME) resulting in increased infiltration of effector T cells in solid tumours (Lopez 2020, AACR). We hypothesize that the use of AKT inhibition in PTEN glioblastomas may deplete the TME of suppressive immune cells, and render malignant brain tumours more responsive to ICIs. We present updated data for the combination of Ipat+ATZ in patients with glioblastoma. Method Patients with relapsed WHO grade IV GBM with stable neurological symptoms ≥5 days prior to enrolment, requiring <3mg Dexamethasone were recruited into two cohorts of this early phase, open-label, single-centre trial studying the combination of Ipatasertib (Ipat) and Atezolizumab (ATZ): a dose finding cohort (A2; n=9) and an expansion cohort (B3; n=7, recruitment ongoing). The Ice-CAP A2 cohort assessed safety, pharmacodynamic, and preliminary clinical activity of Ipat (200mg or 400mg OD) + ATZ (1200mg Q3W) in pts with potentially resectable relapsed WHO Grade IV GBM. Pts had a 14-21-day run-in phase of Ipat then surgical tumour resection. Combination Ipat+ATZ commenced post surgery. Patients who declined surgery or who were deemed high risk for surgery proceeded directly to combination. Patients in the expansion cohort B3 commenced directly on Ipat+ATZ at the RP2D of 400mg Ipat with ATZ. Results 16 evaluable recurrent GBM pts were enrolled across two cohorts. Median age 56 yrs (25-71 yrs). Median ECOG PS 1. Median lines of prior therapy 1 (range 1-4). 10 pts had PTEN loss by IHC (H<30) and/or PTEN mutations on next generation sequencing. No DLTs, treatment-related (TR) serious adverse events (AEs), or immune-related AEs were observed. Most common TR AEs were G1 diarrhoea (44%), mucositis (17%), rash (28%). Clinical benefit rate (CR, PR and SD> 6 cycles) at clinical cutoff date (23/02/21) in patients with PTEN aberration was 30% (3/10). A 58-year-old man with PTEN loss had MRI at Cycle 5 showing worsening enhancement suggestive of disease progression. Resection of the lesion showed intense lymphocyte infiltration and pathological CR. He is currently on Cycle 22 with no evidence of disease. Two other patients with PTEN loss with radiological stable disease per RANO criteria remain well on study for >6 cycles. Conclusion Combination Ipat+ATZ appears safe and tolerable in GBM pts, with 400mg Ipatasertib OD + 1200mg ATZ Q3W declared as RP2D. Early efficacy signals were detected with PTEN loss being a promising predictive biomarker for response to combination. An expansion cohort enriched with pts with PTEN loss is ongoing.


2021 ◽  
Author(s):  
Ann-Sofie Priergaard Zinck ◽  
Aslak Grinsted

Abstract. The Müller Ice Cap will soon set the scene for a new drilling project. Therefore, ice thickness estimates are necessary for planning since thickness measurements of the ice cap are sparse. Here, two models are presented and compared, i) a simple inversion of the shallow ice approximation (SIA inversion) by the use of a single radar line in combination with the glacier outline, surface slope, and elevation, and ii) an iterative inverse method using the Parallel Ice Sheet Model (PISM). The two methods mostly agree about a good drill site candidate. However, the new semi-empirical SIA inversion is insensitive to mass balance, computationally fast, and provides better fits.


Sign in / Sign up

Export Citation Format

Share Document