scholarly journals Modeling separation of mineral particles in the upward flow

2021 ◽  
Vol 773 (1) ◽  
pp. 012088
Author(s):  
IA Matveev ◽  
BV Yakovlev ◽  
NG Eremeeva ◽  
TP Kulichkina
Author(s):  
G. M. Brown ◽  
D. F. Brown ◽  
J. H. Butler

The term “gel”, in the jargon of the plastics film industry, may refer to any inclusion that produces a visible artifact in a polymeric film. Although they can occur in any plastic product, gels are a principle concern in films where they detract from the cosmetic appearance of the product and may compromise its mechanical strength by acting as local stress concentrators. Many film gels are small spheres or ellipsoids less than one millimeter in diameter whereas other gels are fusiform-shaped and may reach several centimeters in length. The actual composition of gel inclusions may vary from miscellaneous inorganics (i.e. glass and mineral particles) and processing additives to heavily oxidized, charred or crosslinked polymer. The most commonly observed gels contain polymer differing from the bulk of the sample in its melt viscosity, density or molecular weight.Polymeric gels are a special concern in polyethylene films. Over the years and with the examination of a variety of these samples three predominant polymeric species have been observed: density gels which have different crystallinity than the film; melt-index gels in which the molecular weight is different than the film and crosslinked gels which are comprised of crosslinked polyethylene.


Author(s):  
Karen A. Katrinak ◽  
James R. Anderson ◽  
Peter R. Buseck

Aerosol samples were collected in Phoenix, Arizona on eleven dates between July 1989 and April 1990. Elemental compositions were determined for approximately 1000 particles per sample using an electron microprobe with an energy-dispersive x-ray spectrometer. Fine-fraction samples (particle cut size of 1 to 2 μm) were analyzed for each date; coarse-fraction samples were also analyzed for four of the dates.The data were reduced using multivariate statistical methods. Cluster analysis was first used to define 35 particle types. 81% of all fine-fraction particles and 84% of the coarse-fraction particles were assigned to these types, which include mineral, metal-rich, sulfur-rich, and salt categories. "Zero-count" particles, consisting entirely of elements lighter than Na, constitute an additional category and dominate the fine fraction, reflecting the importance of anthropogenic air pollutants such as those emitted by motor vehicles. Si- and Ca-rich mineral particles dominate the coarse fraction and are also numerous in the fine fraction.


Waterlines ◽  
1993 ◽  
Vol 12 (2) ◽  
pp. 29-31 ◽  
Author(s):  
Vinay Pratap Singh ◽  
Malay Chaudhuri

2000 ◽  
Vol 15 (2) ◽  
pp. 88-97 ◽  
Author(s):  
Lars Järnström ◽  
Magnus Wikström ◽  
Mikael Rigdahl
Keyword(s):  

2020 ◽  
Vol 58 (3) ◽  
pp. 400-409
Author(s):  
N. A. Luchinkin ◽  
N. G. Razuvanov ◽  
I. A. Belyaev ◽  
V. G. Sviridov

1983 ◽  
Vol 48 (3) ◽  
pp. 842-853
Author(s):  
Kurt Winkler ◽  
František Kaštánek ◽  
Jan Kratochvíl

Specific gas-liquid interfacial area in flow tubes 70 mm in diameter of the length 725 and 1 450 mm resp. containing various swirl bodies were measured for concurrent upward flow in the ranges of average gas (air) velocities 11 to 35 ms-1 and liquid flow rates 13 to 80 m3 m-2 h-1 using the method of CO2 absorption into NaOH solutions. Two different flow regimes were observed: slug flow swirled annular-mist flow. In the latter case the determination was carried out separately for the film and spray flow components, respectively. The obtained specific areas range between 500 to 20 000 m3 m-2. Correlation parameters are energy dissipation criteria, related to the geometrical reactor volume and to the static liquid volume in the reactor.


Sign in / Sign up

Export Citation Format

Share Document