scholarly journals Research Progress on the Joint Connection Mode of Steel Coupling Beam

2021 ◽  
Vol 783 (1) ◽  
pp. 012019
Author(s):  
Xunzhen Zheng ◽  
Jiguang Chen ◽  
Haichuan Jiang
Author(s):  
Guoqiang LI ◽  
Mengde PANG ◽  
Feifei Sun ◽  
Liulian LI ◽  
Jianyun SUN

Coupled shear walls are widely used in high rise buildings, since they can not only provide efficient lateral stiffness but also behave outstanding energy dissipation ability especially for earthquake-resistance. Traditionally, the coupling beams are made of reinforced concrete, which are prone to shear failure due to low aspect ratio and greatly reduce the efficiency and ability of energy dissipation.  For overcoming the shortcoming of concrete reinforced coupling beams (RCB), an innovative steel coupling beams called two-level-yielding steel coupling beam (TYSCB) is invented to balance the demand of stiffness and energy dissipation for coupled shear walls. TYSCBs are made of two parallel steel beams with yielding at two different levels.  To verify and investigate the aseismic behaviour improvement of TYSCB-coupled shear walls, two 1/3 scale, 10-storey coupled shear wall specimens with TYSCB and RCB were tested under both gravity and lateral displacement reversals. These two specimens were designed with the same bearing capacity, thus to be easier to compare. The experimental TYSCB specimen demonstrated more robust cyclic performance. Both specimens reached 1% lateral drift, however, the TYSCB-coupled shear wall showed minimal strength degradation. Additionally, a larger amount of energy was dissipated during each test of the TYSCB specimen, compared with the RCB specimen. Based on the experimental results, design recommendations are provided.


2006 ◽  
Vol 18 (1) ◽  
pp. 135-145
Author(s):  
Wan-Shin Park ◽  
Hyun-Do Yun

2019 ◽  
Vol 201 ◽  
pp. 109820 ◽  
Author(s):  
Xiaodong Ji ◽  
Yuhao Cheng ◽  
Tongseng Leong ◽  
Yao Cui

2005 ◽  
Vol 61 (7) ◽  
pp. 912-941 ◽  
Author(s):  
Wan-Shin Park ◽  
Hyun-Do Yun ◽  
Sun-Kyoung Hwang ◽  
Byung-Chan Han ◽  
Il Seung Yang

2007 ◽  
Vol 133 (12) ◽  
pp. 1801-1807 ◽  
Author(s):  
Patrick J. Fortney ◽  
Bahram M. Shahrooz ◽  
Gian A. Rassati

2016 ◽  
Vol 122 ◽  
pp. 138-150 ◽  
Author(s):  
Alireza Farsi ◽  
Farhad Keshavarzi ◽  
Pouya Pouladi ◽  
Rasoul Mirghaderi

1998 ◽  
Vol 25 (5) ◽  
pp. 803-818 ◽  
Author(s):  
Kent A Harries ◽  
Denis Mitchell ◽  
Richard G Redwood ◽  
William D Cook

The design and nonlinear dynamic analyses of four coupled wall prototype structures are presented. Two ductile partially coupled and two ductile coupled wall structures are considered, each having reinforced concrete and steel coupling beams. The design of each of the prototype structures was based on the provisions of the 1995 National Building Code of Canada. Nonlinear dynamic analyses of each structure, using four different scaled earthquake ground motions are presented and the results discussed. Comparisons of the responses of the structures with concrete and steel coupling beams are made, demonstrating the advantages of using steel beams to couple reinforced concrete walls.Key words: composite construction, coupled wall, diagonally reinforced concrete coupling beam, "flexure critical" steel coupling beam, seismic design, "shear critical" steel coupling beam.


Sign in / Sign up

Export Citation Format

Share Document