scholarly journals Replacement of Palm Methyl Ester to Rapeseed Methyl Ester for Tar Removal in the Nong Bua Dual Fluidized Bed Gasification Power Plant

2021 ◽  
Vol 801 (1) ◽  
pp. 012021
Author(s):  
P Tonpakdee ◽  
J Hongrapipat ◽  
V Siriwongrungson ◽  
S Pang ◽  
R Rauch ◽  
...  
2021 ◽  
Vol 798 (1) ◽  
pp. 012010
Author(s):  
Pimnara Tonpakdee ◽  
Janjira Hongrapipat ◽  
Vilailuck Siriwongrungson ◽  
Shusheng Pang ◽  
Reinhard Rauch ◽  
...  

Author(s):  
Tobias Pröll ◽  
Reinhard Rauch ◽  
Christian Aichernig ◽  
Hermann Hofbauer

The work focuses on a dual fluidized bed gasification technology that is successfully operated for combined heat and power production at a scale of 8 MWth in Guessing/Austria since 2002. The reactor concept consists of a circulating fluidized bed system with a steam-fluidized bubbling bed integrated into the solids return loop. Accompanying the operation of the commercial scale plant, parameter models have been developed and validated by comparison to measured data. As the models naturally fulfill mass and energy balances, the simulation also allows the validation of measurement data. The behaviour of the plant is studied by carrying out variations of selected parameters. Evaluation of different plant operation cases yields correlations between process variables. The solids circulation rate is shown versus riser exit velocity. Fuel water content and gasification temperature significantly influence global plant performance. Simulation predicts the efficiency of the existing power plant in optimized operation. Finally, part load behaviour is investigated and performance maps of the CHP plant are presented. High fuel water content at high gas engine load results in high gas velocities in the riser (erosion limit) and higher heat ratio in the produced energy. It is concluded that CHP-concepts based on fluidized bed steam gasification can reach high electric efficiencies and high overall fuel utilization rates even at small plant capacities of about 10 MWth.


Author(s):  
Vilailuck Siriwongrungson ◽  
Janjira Hongrapipat ◽  
Matthias Kuba ◽  
Reinhard Rauch ◽  
Shusheng Pang ◽  
...  

Author(s):  
Cong-Binh Dinh ◽  
Shu-San Hsiau ◽  
Chien-Yuan Su ◽  
Meng-Yuan Tsai ◽  
Yi-Shun Chen ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 189-203
Author(s):  
A. Lunzer ◽  
S. Kraft ◽  
S. Müller ◽  
H. Hofbauer

Author(s):  
Sébastien Pissot ◽  
Robin Faust ◽  
Panida Aonsamang ◽  
Teresa Berdugo Vilches ◽  
Jelena Maric ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 399
Author(s):  
Selina Hafner ◽  
Max Schmid ◽  
Günter Scheffknecht

Finding a way for mitigating climate change is one of the main challenges of our generation. Sorption-enhanced gasification (SEG) is a process by which syngas as an important intermediate for the synthesis of e.g., dimethyl ether (DME), bio-synthetic natural gas (SNG) and Fischer–Tropsch (FT) products or hydrogen can be produced by using biomass as feedstock. It can, therefore, contribute to a replacement for fossil fuels to reduce greenhouse gas (GHG) emissions. SEG is an indirect gasification process that is operated in a dual-fluidized bed (DFB) reactor. By the use of a CO2-active sorbent as bed material, CO2 that is produced during gasification is directly captured. The resulting enhancement of the water–gas shift reaction enables the production of a syngas with high hydrogen content and adjustable H2/CO/CO2-ratio. Tests were conducted in a 200 kW DFB pilot-scale facility under industrially relevant conditions to analyze the influence of gasification temperature, steam to carbon (S/C) ratio and weight hourly space velocity (WHSV) on the syngas production, using wood pellets as feedstock and limestone as bed material. Results revealed a strong dependency of the syngas composition on the gasification temperature in terms of permanent gases, light hydrocarbons and tars. Also, S/C ratio and WHSV are parameters that can contribute to adjusting the syngas properties in such a way that it is optimized for a specific downstream synthesis process.


Sign in / Sign up

Export Citation Format

Share Document