rapeseed methyl ester
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 14)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 13 (18) ◽  
pp. 10059
Author(s):  
Sai Manoj Rayapureddy ◽  
Jonas Matijošius ◽  
Alfredas Rimkus

Depletion in the levels of fossil fuels and increasing environmental concerns associated with the rise in consumption of conventional fuels are among the top global concerns. Finding an alternative sustainable fuel that matches the performance characteristics of diesel/petrol fuels as well as decreases the exhaust emissions has been a challenging task. After deliberate research, it is found that every alternative fuel is associated with different problems when they are used independently, thereby limiting its benefits. Scientists suggest that using different fuel blends might lead to sustainability. This article is the analysis of data obtained from the experimentation based on two different alternative fuels, Rapeseed Methyl Ester (RME)-based biodiesel and Rapeseed Oil (RO), blended with diesel (D) and Isopropanol (P) into three different proportions each. Tests were carried out in a compression ignition (CI) engine, and comparisons are based on the resulted performance and exhaust emission characteristics. The two different alternative fuels are blended into the following proportions to make six fuel mixtures, D50RME30P20, D50RME40P10, D50RME45P5, D50RO30P20, D50RO40P10 and D50RO45P5. The tests are carried out at different loads (BMEP) and are compared to that of pure diesel. Using the experimentation results, we also obtained the combustion characteristics of all fuel mixtures for further evaluation


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5267
Author(s):  
Séverine Cassiers ◽  
François Boveroux ◽  
Christophe Martin ◽  
Rafael Maes ◽  
Kris Martens ◽  
...  

Increasing the biodiesel content of diesel fuels is encouraged because of its reduced carbon footprint. Pure rapeseed methyl ester (RME)and used cooking oil methyl ester (UCOME) are characterised by well-to-tank greenhouse gas (GHG) reductions of 54% and 88% compared to pure B0 petrodiesel, respectively. Captive fleets such as public transport buses could benefit from these GHG reductions by increasing the biodiesel content of their fuel because they have a consequent yearly fuel consumption. The aim of this paper is to compare on-road tailpipe emissions of a diesel bus when increasing the biodiesel concentration in the fuel. The tests were carried out on a standard city bus belonging to the Euro V EEV emission standard that was equipped with a portable emission measurement system measuring NO, NO2, PN, CO and CO2 at the tailpipe. The bus followed the SORT which is representative of urban bus driving. The heavy urban on-road measurements indicated increased NOx emissions (24–26%), decreased PN emissions (43–45%) and slightly decreasing CO emissions for B30 RME and UCOME compared to B7. A measurement uncertainty analysis showed that the CO emissions were less reliable. Similar conclusions were drawn for the easy urban on-road bus emission measurements with smaller differences between B7 and B30 RME and UCOME.


2020 ◽  
Vol 39 (3) ◽  
pp. 752-760
Author(s):  
H.A. Dandajeh ◽  
Y.S. Sanusi ◽  
T.O. Ahmadu

This paper presents an experimental investigation into the exhaust emissions characteristics of a gardener Compression Ignition (CI) Engine fuelled with rapeseed methyl Esther (RME) and fossil diesel under lean equivalence ratios (0.2≤ φ ≤0.8). The experiments were carried out at engine speeds of 750 and 1250 rpm under five different loads. The experimental results showed that NOx and CO2 emissions increased while emissions of HC, O2 and CO decreased with increasing equivalence ratio, exhaust temperature, brake mean effective pressure and specific fuel consumption. All exhaust emissions were found to decrease with increasing engine speed from 750 to 1250 rpm. There was reduction in exhaust emissions of RME over fossil diesel by 0.06% for O2, 84% for CO and 4.7% for CO2 at 750rpm. At higher speed of 1250rpm however, RME was observed having higher NOx and CO2 but relatively lower O2 and CO than the fossil diesel. Keywords— Exhaust Emission, Compression ignition engine, rapeseed methyl Esther, engine speed, fossil diesel


Author(s):  
Gvidonas LABECKAS ◽  
Stasys SLAVINSKAS ◽  
Tomas MACKEVIČIUS

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on rapeseed methyl ester (B) and rapeseed methyl ester -butanol (Bu5, Bu10, Bu15) blends, at various loads and 2000 rpm engine speeds. The experimental tests were performed on a four-stroke, single-cylinder, air-cooled diesel engine FL511. The bench test results showed that the brake specific fuel consumption increased, when operating on biodiesel-butanol fuel blends compared to neat biodiesel. The maximum brake thermal efficiency sustained at the levels from 7.3% to 12.9% lower in comparison with neat biodiesel operating at low engine load. When the engine was running at maximum torque mode using biodiesel-butanol fuel blend Bu15 the total emissions of nitrogen oxides decreased. Thus, the greatest fossil fuel challenge related with the simultaneous reduction of both the NOx emissions and the smoke opacity (PM) could be reasonably solved by switching a diesel engine on totally renewable biodiesel-n-butanol biofuel blends.Keywords: diesel engine, rapeseed oil derived biodiesel, n-butanol, engine efficiency, brake specific fuel consumption, emissions, smoke opacity.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2398 ◽  
Author(s):  
Alfredas Rimkus ◽  
Jonas Matijošius ◽  
Sai Manoj Rayapureddy

This article presents the results of a study of energy and ecological indicators at different engine loads (BMEP) adjusting the Start of Injection (SOI) of a Compression Ignition Engine fuelled with blends of diesel (D), rapeseed methyl ester (RME)-based biodiesel and isopropanol (P). Fuel blends mixed at D50RME45P5, D50RME40P10 and D50RME30P20 proportions were used. Alcohol-based fuels, such as isopropanol, were chosen because they can be made from different biomass-based feedstocks and used as additives with diesel fuel in diesel engines. Diesel fuel and its blend with 10% alcohol have almost the same thermal efficiency (BTE). In further examination of energy and ecological indicators, combustion parameters were analysed at SOI 6 CAD BTDC using AVL BOOST software (BURN subprogram). Increasing alcohol content in fuel blends led to a reduced cetane number, which prolonged the ignition delay phase and intensified heat release in the premixed combustion phase. Higher combustion temperatures and oxygen content in the fuel blends increased NOx emissions. Lower C/H ratios and higher O2 levels affected by RME and isopropanol reduced smoke emissions.


Sign in / Sign up

Export Citation Format

Share Document