scholarly journals Feasibility Study of Copper-64 Radioisotope Production by Secondary Fast Neutron Bombardment

2021 ◽  
Vol 927 (1) ◽  
pp. 012034
Author(s):  
I Kambali ◽  
I R Febrianto

Abstract As a beta and positron emitter, copper-64 (Cu-64) has been coined a theranostic agent in nuclear medicine. Copper-64 is generally produced by bombarding a nickel-64 target with a proton beam via 64Ni(p,n)64Cu nuclear reaction. In this work, secondary fast neutrons are proposed to produce Cu-64 radioisotope via 64Zn(n,p)64Cu nuclear reaction. The secondary fast neutrons were produced by a 10 MeV proton-irradiated primary titanium (Ti) target simulated using the PHITS 3.16 code. In the simulation, the Ti target thickness was varied from 0.01 to 0.1 cm to obtain the optimum secondary fast neutron flux, which was calculated in the rear, radial, and front directions. The Cu-64 radioactivity yield was then computed using the TENDL 2019 nuclear cross-section data. Also, the expected radioactive impurities during Cu-64 production were predicted. The simulation results indicated that the total fast neutron flux resulted from the 10-MeV proton bombarded Be target was 1.70x1012 n/cm2s. The maximum integrated Cu-64 radioactivity yield was 2.33 MBq/µAh when 0.03 cm thick Ti target was shot with 10-MeV protons. The most significant impurities predicted during the bombardment were radioactive isotopes e.g., Co-61, and Zn-65, with the total radioactivity yield estimated to be 0.28 Bq/µAh.

1950 ◽  
Vol 46 (2) ◽  
pp. 339-352 ◽  
Author(s):  
K. W. Allen ◽  
D. L. Livesey ◽  
D. H. Wilkinson

The absolute measurement of fast neutron flux presents several difficult problems. Few methods have yet been described in the literature, although the experimental techniques developed by several authors for the detection of fast neutrons (Baldinger, Huber and Staub(7), Barshall and Kanner(9), Amaldi, Bocciarelli, Ferretti and Trabacchi (3), Gray (19), Barshall and Battat(8)) may easily be adapted to this type of measurement. It is, however, most important to have available methods of measuring fast neutron flux to permit the determination of cross-sections for nuclear processes induced by fast neutrons, and several such methods have been developed in the Cavendish Laboratory in recent years. They are the subjects of separate papers (Bretscher and French (13), Kinsey, Cohen and Dainty (21), Allen (l), Allen and Wilkinson (2)). The main purpose of the present paper is to describe the results of experiments carried out to compare these methods in order to test the validity of the assumptions implicit in the individual methods.


Author(s):  
С.В. Пляцко ◽  
Л.В. Рашковецкий

AbstractThe effect of a fast neutron flux (Φ = 10^14–10^15 cm^–2) on the electrical and photoluminescence properties of p -CdZnTe single crystals is studied. Isothermal annealing is performed ( T = 400–500 K), and the activation energy of the dissociation of radiation-induced defects is determined at E _D ≈ 0.75 eV.


2020 ◽  
Vol 6 (3) ◽  
Author(s):  
Petra Pónya ◽  
Gyula Csom ◽  
Sándor Fehér

Abstract Fast neutron irradiation causes embrittlement of the reactor pressure vessel (RPV) material; therefore, it may end operation life before design lifetime. Well-known method to recuperate crystal lattice dislocations is annealing. In the current version of thorium fueled supercritical water-cooled reactor (SCWR) design proposed by the Institute of Nuclear Technology at Budapest University of Technology and Economics (BME NTI), the supercritical fluid flows upward between the core barrel and the inner surface of the RPV thereby, the coolant would keep the RPV's temperature at ∼500 °C. This reverse coolant flow direction would decrease the embrittlement of RPV by constant annealing. To minimize the fast neutron flux increase, a relatively thin shielding connected to the inner surface of the barrel could be used. This presents fast neutron irradiation analysis, performed for different settings of the shielding to reduce fast neutron flux reaching the inner surface of RPV.


Sign in / Sign up

Export Citation Format

Share Document