scholarly journals Soil cryogenesis as a natural risk factor for gas pipelines in the permafrost zone during modern warming

2021 ◽  
Vol 931 (1) ◽  
pp. 012009
Author(s):  
I Khudyakov ◽  
O V Reshotkin ◽  
D V Demin

Abstract The paper summarizes the experience of studying the effect of modern warming on the thawing depth of sandy and loamy soils in the permafrost zone. The definition of soil cryogenesis as a natural process and facies as the end result of soil cryogenesis as a process is given. The effect of soil cryogenesis facies on stress corrosion cracking of gas pipes of the Gazprom system in cold and warm seasons has been studied. It was found that the facies of soil cryogenesis are interconnected by the process of energy and mass exchange. It is shown that in the annual cycle, each facies formed by soil cryogenesis is the basis for the development of stress corrosion cracking of gas pipelines.

Author(s):  
Toby Fore ◽  
Stefan Klein ◽  
Chris Yoxall ◽  
Stan Cone

Managing the threat of Stress Corrosion Cracking (SCC) in natural gas pipelines continues to be an area of focus for many operating companies with potentially susceptible pipelines. This paper describes the validation process of the high-resolution Electro-Magnetic Acoustical Transducer (EMAT) In-Line Inspection (ILI) technology for detection of SCC prior to scheduled pressure tests of inspected line pipe valve sections. The validation of the EMAT technology covered the application of high-resolution EMAT ILI and determining the Probability Of Detection (POD) and Identification (POI). The ILI verification process is in accordance to a API 1163 Level 3 validation. It is described in detail for 30″ and 36″ pipeline segments. Both segments are known to have an SCC history. Correlation of EMAT ILI calls to manual non-destructive measurements and destructively tested SCC samples lead to a comprehensive understanding of the capabilities of the EMAT technology and the associated process for managing the SCC threat. Based on the data gathered, the dimensional tool tolerances in terms of length and depth are derived.


2018 ◽  
Vol 4 (1) ◽  
pp. 179
Author(s):  
Y A Perlovich ◽  
I V Ryakhovskikh ◽  
M G Isaenkova ◽  
O A Krymskaya ◽  
N S Morozov ◽  
...  

.


2019 ◽  
Vol 10 (1) ◽  
pp. 42-52
Author(s):  
L. V. Volkova ◽  
O. V. Murav’eva ◽  
V. V. Murav’ev ◽  
I. V. Buldakova

One of the main conditions of safe operation of gas pipelines is the use of non-destructive diagnostic methods. Particularly important problem is the earlier operational diagnosis of pipes’ material of main gas pipelines based on the evaluation of the stress-strain state, elastic moduli and properties anisotropy by acoustic methods. The aim of the work is to develop methods for acoustic assessment of the stress-strain state, the elastic moduli and the properties anisotropy of pipeline material and to study these characteristics in different sections of main pipelines using a device based on contactlessEMAtransducers.Methods are implemented using specialized equipment (the structurescopeSEMA) and non-contact electromagnetic acoustic transducers. As an object of research, we used fragments – the cuttings of gas pipelines with circumferential welds both after fabrication and removed from service with stress corrosion cracking, including ones with corrosion damage and without visible damage.The method of determining the plane stress-strain state of pipeline elements is based on the phenomenon of acoustoelasticity – the dependence of the propagation velocity of ultrasonic waves on mechanical stresses. The method for determining the elastic characteristics of materials and the anisotropy of their properties is based on the relationship between the velocities of ultrasonic waves and the elastic properties of the medium. Both techniques are implemented by sounding the sample in one section using a longitudinal wave and two shear waves with mutually perpendicular polarization planes coinciding with the main stresses, and measuring their propagation times.It is shown that the stress state distribution both in the circumferential direction and along the generatrix is uneven which is caused by the peculiarities of samples (presence of a welded joint, stress corrosion cracking, long-term operation). The smallest acoustic anisotropy is observed for the Young's modulus. The anisotropy of the properties of most samples is in the range of 12–14 % for shear modulus, 9–10 % for Young’s modulus, 13–15 % for Poisson’s ratio. For samples with stress corrosion cracking a sharp decrease in the anisotropy coefficient is observed which makes it possible to use the indicated characteristics as informative parameters in detecting stress corrosion cracking.A feature of the proposed methods is high accuracy, due to the absence of necessity to determine the material density and precision measurement of its thickness, the measurement error of which is significant by known methods.Keywords:main gas pipeline, elastic moduli, acoustic anisotropy of properties, the biaxial stress-strain state, longitudinal and transversal waves.


Sign in / Sign up

Export Citation Format

Share Document