scholarly journals The Effect Mechanisms of Intake Manifold Water Injection on the Emissions of a Natural Gas Engine

2021 ◽  
Vol 943 (1) ◽  
pp. 012015
Author(s):  
Qichao Qin ◽  
Youpeng Chen ◽  
Zhuogeng Qin ◽  
Chaoqun Tu

Abstract NOx is the main emission of lean burn natural gas engine (NGE). Water injection (WI) is an effective method to reduce NOx, which has been widely studied in conventional fuel engine. Currently, there are few researches on the application of WI in NGE. The influences of WI on NGE are not clear. In the paper, the effect mechanisms of WI on the emissions of NGE are studied. Based on the thermodynamic properties of water and the combustion mechanism of natural gas, the emissions generation mechanism of NGE with WI was analyzed. According to the experimental system, the effects of intake manifold water injection (IMWI) on the emissions of a lean burn NGE was carried out. The results show that, with WI, the in-cylinder temperature decreased greatly, which effectively inhibited the formation of thermal NO. Water generated a lot of OH groups, which effectively inhibited the formation of rapid NO. At 1800 rpm and 0.92g/s WI rate, NOx is reduced by 70.4%. OH group could effectively promote CO oxidize to CO2. At 1000 rpm and 0.92g/s WI rate, CO is decreased by 22.2%. However, since the decrease of the total activation energy of combustion reaction, the chain breaking reaction increased, resulting in a significant increase in HC. At 800rpm and 0.92g/s WI rate, HC was increased by 11.6%.

1998 ◽  
Vol 123 (3) ◽  
pp. 425-430 ◽  
Author(s):  
Anupam Gangopadhyay ◽  
Peter Meckl

In this paper, a control-oriented model of a medium-duty throttle-body natural gas engine is developed. The natural gas engine uses lean-burn technology without exhaust gas recirculation (EGR). The dynamic engine model differs from models of gasoline engines by including the natural gas fuel dynamics in the intake manifold. The model is based on a mean value concept and has three state variables: intake manifold pressure, fuel fraction in the intake manifold and the engine rotational speed. The resulting model has been validated in steady-state and transient operation over the usual operating range of the engine between 800 rpm and 2600 rpm with air/fuel ratios ranging between 18.0 and 24.0.


Sign in / Sign up

Export Citation Format

Share Document