scholarly journals Design optimization of passenger SUV’s crash box and bumper beam by using finite element method

2021 ◽  
Vol 1068 (1) ◽  
pp. 012023
Author(s):  
Ahmad Yunus Nasution ◽  
Mohd Ruzaimi Mat Rejab ◽  
Quanjin Ma ◽  
Mohamad Ardy Firmansyah
2012 ◽  
Vol 215-216 ◽  
pp. 239-243
Author(s):  
Ming Hui Zhang ◽  
Di Zhang ◽  
Yong Hui Xie

As the main bearing part in a turbine blade, the root carries most of the loads of the whole blade. The improvement of the root structure can be used to enhance the operation reliability of steam turbine. The research on design optimization for double-T root and rim of a turbine blade was conducted by three-dimensional finite element method. Based on the APDL (ANSYS parametric design language), a multi-variable parametric model of the double-T root and rim was established. Twelve characteristic geometrical variables of the root-rim were optimized to minimize the maximum equivalent stress. The optimal structure of the double-T root-rim is obtained through the optimization. Compared with the original structure, the equivalent stress level of the root and rim has a significant reduction. Specifically, the maximum equivalent stress of root and rim reduces by 14.25% and 13.59%, respectively.


2012 ◽  
Vol 433-440 ◽  
pp. 746-753
Author(s):  
Payam Karimi ◽  
Shahin Shadlou ◽  
Bahare Nazari

Optimizing the complicated engineering structures has always been a huge issue. A technique for the design optimization of different components is presented using genetic algorithm and finite element method. To reduce the runtime and increase the efficiently of proposed model a new method of coupling is presented. In addition, two different problems were solved using the presented model and the results showed a great and fast convergence.


Author(s):  
Liqiang An ◽  
G. Gary Wang ◽  
Zhangqi Wang

In this paper, a probabilistic design optimization method based on finite element method is proposed to calculate the variability of design parameters subject to a specified dispersion of natural frequencies of rotating blades. The element stiffness and mass matrices are derived using a two-stage finite element method and numerical integration. Based on the perturbation technology, the sensitivity of the frequencies, as well as relationship between the frequency dispersion and the coefficient of variability (CV) of the design parameters can be obtained. Such sensitivity information is then used to convert the probabilistic design optimization problem into a deterministic optimization problem. Two case studies are given to illustrate the proposed method. From the results, it is concluded that rotation of blade changes the sensitivity of CV to the design parameters considered, and using the proposed method can transform the probabilistic constraints to deterministic constraints.


Sign in / Sign up

Export Citation Format

Share Document