scholarly journals Control Design of an Inverted Pendulum on a Moving Base Using State Feedback

2021 ◽  
Vol 1107 (1) ◽  
pp. 012064
Author(s):  
Victoria Oguntosin ◽  
Samson Ogheneovo Oruma ◽  
Ayoola Akindele ◽  
Ademola Abdulkareem
Author(s):  
Joonho Lee ◽  
Jongeun Choi

This paper presents an output feedback control design to stabilize the inverted pendulum at the upright equilibrium as an extension of our previous work [1]. Compared to our previous work, we add one more time scale between a pendulum angle and angular velocity to reduce a traveled distance of the cart. State feedback control is designed to enable the pendulum to pass through input singularity configurations. Extended High-Gain Observers are used to estimate velocity and acceleration terms while dynamic inversion utilizes the estimates to deal with input coefficient uncertainties and singularity configurations. The proposed control is verified through numerical simulations.


2008 ◽  
Vol 78 (4) ◽  
pp. 514-531 ◽  
Author(s):  
Wudhichai Assawinchaichote ◽  
Sing Kiong Nguang ◽  
Peng Shi ◽  
El-Kébir Boukas

2014 ◽  
Vol 71 (1) ◽  
Author(s):  
Hazem I. Ali

In this paper the design of robust stabilizing state feedback controller for inverted pendulum system is presented. The Ant Colony Optimization (ACO) method is used to tune the state feedback gains subject to different proposed cost functions comprise of H-infinity constraints and time domain specifications. The steady state and dynamic characteristics of the proposed controller are investigated by simulations and experiments. The results show the effectiveness of the proposed controller which offers a satisfactory robustness and a desirable time response specifications. Finally, the robustness of the controller is tested in the presence of system uncertainties and disturbance.


Sign in / Sign up

Export Citation Format

Share Document