scholarly journals Indoor thermal comfort assessment in office buildings in hot-humid climate

2021 ◽  
Vol 1144 (1) ◽  
pp. 012029
Author(s):  
F Abass ◽  
L H Ismail ◽  
I A Wahab ◽  
W A Mabrouk ◽  
H Kabrein
2016 ◽  
Vol 78 (11) ◽  
Author(s):  
Nur Dalilah Dahlan ◽  
Amirhosein Ghaffarianhoseini

Vernacular houses using indigenous building materials have shown to be a good strategy for sustainable energy consumption without compensating the occupant’s indoor thermal comfort. Bamboo has been identified as the most used building material for vernacular houses in South-East Asia region. However, very little investigation has been conducted to study the passive performance of a bamboo house in maintaining indoor thermal comfort. This study compares the indoor microclimate conditions using thermal comfort Predicted Mean Vote and Predicted Percentage of Dissatisfied models (PMV-PPD) developed by American Society Heating, Refrigerating and Air-conditioning Engineers  (ASHRAE) between indigenous bamboo house (H1) and modern  brick house (H2) at a village located in the Ulu Gombak Forest Reserve, Selangor. Observations on environmental factors and predicted thermal comfort satisfaction level between day and night times were also taken into consideration. The findings suggest that the use of bamboo plus other vernacular house design features such as raising a house on stilts, located on hilly site and providing air permeability in H1 can lead to a thermally comfortable indoor environment, particularly during night time.


2020 ◽  
Vol 223 ◽  
pp. 110072 ◽  
Author(s):  
Ng Wai Tuck ◽  
Sheikh Ahmad Zaki ◽  
Aya Hagishima ◽  
Hom Bahadur Rijal ◽  
Fitri Yakub

2020 ◽  
Vol 197 ◽  
pp. 02006
Author(s):  
Miguel Chen Austin ◽  
Milvia Castillo ◽  
Ángela de Mendes Da Silva ◽  
Dafni Mora

The increasing concern expressed by building designers in Panama, due to new building-energy regulations, regarding sustainable development goals and energy efficiency, is leading architects to reanalyse their design strategies and evaluate the vernacular architecture. The main implications of the hot-humid climate characteristics stipulate that the need for cooling of indoor environments drives buildings’ design and settlements. This work aims to assess the use of bioclimatic architecture strategies in three existing building typologies design in Panama, in terms of thermal comfort performance. The approach adopted here is to compare and analyse the vernacular architecture with current architecture. Besides, to evaluate bioclimatic architecture strategies based on recent investigations and the guidelines proposed by Givony, Olgyay, among others. A numerical assessment was performed on the dynamic simulation software DesignBuilder, where the building’s passive strategies are evaluated in terms of operative temperature, relative humidity (rH), PMV, PPD, and discomfort hours (DH). All three houses, the HVA, HCA, and HRES were tested in three different locations within Panama City. Results showed that the strategies in HVA perform best for reducing rH levels, but the HRES performs best in overall thermal comfort performance, apart yet from the high rH levels encountered.


2021 ◽  
Vol 29 (2) ◽  
Author(s):  
Maryam Qays Oleiwi ◽  
Mohd Farid Mohamed

Past years have witnessed the popularity of traditional Malay house as a common housing type in Malaysia. However, double-storey house has become one of the common types of low-rise housing in Malaysia. Several passive cooling strategies have been adopted to cope with the hot-humid climate of Malaysia. In this study, the thermal comfort of a double-storey house was examined when different passive cooling strategies that were adopted from traditional Malay houses were applied using IES-VE 2019 building simulation software. The simulation was conducted for various design strategies such as changing concrete roof tiles to clay roof tiles, adding two small openings to the attic, removing the ceiling between the upper floor and the attic, and extending the overhang by 50% of its length for all the four facades. All these strategies were tested and compared between full-day natural ventilation and without any ventilation. The thermal comfort of these strategies was graphically defined based on the operative temperature. These analyses revealed that protecting the building envelope by extending the overhang by 50% of its length for all the four facades could ensure the best thermal comfort is achieved compared to other selected strategies. Recommendations for further studies are also outlined in this paper.


Sign in / Sign up

Export Citation Format

Share Document