scholarly journals HOUSE DESIGN VARIABLES IN PROVIDING INDOOR THERMAL COMFORT IN WARM HUMID CLIMATE

2020 ◽  
Vol 19 (1) ◽  
pp. 1
Author(s):  
Laina Hilma Sari ◽  
Zahriah Zahriah
2016 ◽  
Vol 78 (11) ◽  
Author(s):  
Nur Dalilah Dahlan ◽  
Amirhosein Ghaffarianhoseini

Vernacular houses using indigenous building materials have shown to be a good strategy for sustainable energy consumption without compensating the occupant’s indoor thermal comfort. Bamboo has been identified as the most used building material for vernacular houses in South-East Asia region. However, very little investigation has been conducted to study the passive performance of a bamboo house in maintaining indoor thermal comfort. This study compares the indoor microclimate conditions using thermal comfort Predicted Mean Vote and Predicted Percentage of Dissatisfied models (PMV-PPD) developed by American Society Heating, Refrigerating and Air-conditioning Engineers  (ASHRAE) between indigenous bamboo house (H1) and modern  brick house (H2) at a village located in the Ulu Gombak Forest Reserve, Selangor. Observations on environmental factors and predicted thermal comfort satisfaction level between day and night times were also taken into consideration. The findings suggest that the use of bamboo plus other vernacular house design features such as raising a house on stilts, located on hilly site and providing air permeability in H1 can lead to a thermally comfortable indoor environment, particularly during night time.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3228
Author(s):  
Xiaodan Huang ◽  
Qingyuan Zhang ◽  
Ineko Tanaka

As the gymnasiums in subtropical region with hot and humid climate are naturally ventilated during non-competition periods, occupants exercising indoors often feel uncomfortable, especially in summer. In order to provide thermally comfortable and healthy environment for the occupants, the design on architectural form is found to be an effective solution on improving indoor thermal comfort of naturally ventilated gymnasiums. Therefore, a new perspective regarding optimization of naturally ventilated gymnasiums is proposed in the aspect of the architectural form. This paper presents the optimization of architectural form in naturally ventilated gymnasiums in which simulation and orthogonal experiment methods are combined. Through numerical simulation with FlowDesigner software, the significance of architectural form affecting indoor thermal comfort has been given, and the optimal architectural forms of naturally ventilated gymnasium are determined. The results show that the roof insulation type is the most significant factor influencing indoor thermal comfort; thus, it should be considered primarily in optimization. Moreover, the range analysis and variance analysis reveal the rankings of the factors for the gymnasium thermal comfort. In addition, it is demonstrated that the optimal gymnasium model, when compared with the initial gymnasium model, has a satisfactory effect on improving the indoor thermal comfort, as the average value of Predicted Thermal Sensation (PTS) in August decreased from 1.11 (Slightly hot) to 0.86 (Comfortable). This study provides a new insight for the designers in optimizing the architectural form of gymnasiums for achieving the indoor thermal comfort at hot and humid climate.


2021 ◽  
Vol 1144 (1) ◽  
pp. 012029
Author(s):  
F Abass ◽  
L H Ismail ◽  
I A Wahab ◽  
W A Mabrouk ◽  
H Kabrein

2017 ◽  
Vol 8 (5) ◽  
pp. 221
Author(s):  
Sugiono Sugiono ◽  
Suluh E. Swara ◽  
Wisnu Wijanarko ◽  
Dwi H. Sulistyarini

2021 ◽  
Vol 11 (14) ◽  
pp. 6254
Author(s):  
Elena G. Dascalaki ◽  
Constantinos A. Balaras

In an effort to reduce the operational cost of their dwellings, occupants may even have to sacrifice their indoor thermal comfort conditions. Following the economic recession in Greece over recent years, homeowners have been forced to adapt their practices by shortening heating hours, lowering the indoor thermostat settings, isolating spaces that are not heated or even turning off their central heating system and using alternative local heating systems. This paper presents the results from over 100 occupant surveys using questionnaires and walk-through energy audits in Hellenic households that documented how occupants operated the heating systems in their dwellings and the resulting indoor thermal comfort conditions and actual energy use. The results indicate that the perceived winter thermal comfort conditions were satisfactory in only half of the dwellings, since the actual operating space heating periods averaged only 5 h (compared with the assumed 18 h in standard conditions), while less than half heated their entire dwellings and only a fifth maintained an indoor setpoint temperature of 20 °C, corresponding to standard comfort conditions. Mainstream energy conservation measures include system maintenance, switching to more efficient systems, reducing heat losses and installing controls. This information is then used to derive empirical adaptation factors for bridging the gap between the calculated and actual energy use, making more realistic estimates of the expected energy savings following building renovations, setting prudent targets for energy efficiency and developing effective plans toward a decarbonized building stock.


Sign in / Sign up

Export Citation Format

Share Document