scholarly journals Life cycle energy analysis of a green building in Vietnam

2022 ◽  
Vol 1212 (1) ◽  
pp. 012004
Author(s):  
D L Le ◽  
T Q Nguyen ◽  
H C Pham

Abstract The paper presents the life cycle energy analysis (LCEA) of an office green building in Hanoi, Vietnam to prove the advantages of green buildings regarding energy efficiency and environmental effects. The case study building is a concrete structured one, which consists of 3 basements, 17 floors, and 1 attic with a gross area of 14,112 m2. In the study, the building’s embodied energy is determined based on the contained energy coefficient of the ith material and its quantity needed. Whereas, the operating energy is computed according to the annual energy consumption of the building, which is stimulated by the EnergyPlus simulation software. Relying on the relative share of the demolition energy with the life cycle energy that has been proposed by previous publications, this category will be estimated. Results showed that the initial embodied energy contributed the largest share to the life cycle energy (61.37%), followed by operational energy (27.61%). It also indicated that the percentage share of the operational energy of a green building is much lower than that of other buildings. The primary reason for this is associated with the usage of environmentally friendly materials and energy-saving equipment in the design option of the green building. Therefore, it can be convincing evidence that may help to change the mindset of decision-makers in Vietnam about green buildings.

2000 ◽  
Vol 28 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Roger Fay ◽  
Graham Treloar ◽  
Usha Iyer-Raniga

2014 ◽  
Vol 32 (1) ◽  
pp. 49-60 ◽  
Author(s):  
Zaid Alwan ◽  
Paul Jones

Purpose – The construction industry has focused on operational and embodied energy of buildings as a way of becoming more sustainable, however, with more emphasis on the former. The purpose of this paper is to highlight the impact that embodied energy of construction materials can have on the decision making when designing buildings, and ultimately on the environment. This is an important aspect that has often been overlooked when calculating a building's carbon footprint; and its inclusion this approach presents a more holistic life cycle assessment. Design/methodology/approach – A building project was chosen that is currently being designed; the design team for the project have been tasked by the client to make the facility exemplary in terms of its sustainability. This building has a limited construction palette; therefore the embodied energy component can be accurately calculated. The authors of this paper are also part of the design team for the building so they have full access to Building Information Modelling (BIM) models and production information. An inventory of materials was obtained for the building and embodied energy coefficients applied to assess the key building components. The total operational energy was identified using benchmarking to produce a carbon footprint for the facility. Findings – The results indicate that while operational energy is more significant over the long term, the embodied energy of key materials should not be ignored, and is likely to be a bigger proportion of the total carbon in a low carbon building. The components with high embodied energy have also been identified. The design team have responded to this by altering the design to significantly reduce the embodied energy within these key components – and thus make the building far more sustainable in this regard. Research limitations/implications – It may be is a challenge to create components inventories for whole buildings or for refurbishments. However, a potential future approach for is application may be to use a BIM model to simplify this process by imbedding embodied energy inventories within the software, as part of the BIM menus. Originality/value – This case study identifies the importance of considering carbon use during the whole-life cycle of buildings, as well as highlighting the use of carbon offsetting. The paper presents an original approach to the research by using a “live” building as a case study with a focus on the embodied energy of each component of the scheme. The operational energy is also being calculated, the combined data are currently informing the design approach for the building. As part of the analysis, the building was modelled in BIM software.


2015 ◽  
Vol 109 ◽  
pp. 127-134 ◽  
Author(s):  
Jian Ge ◽  
Xiaoyu Luo ◽  
Jun Hu ◽  
Shuqin Chen

2013 ◽  
Vol 690-693 ◽  
pp. 2583-2588
Author(s):  
Wei Yuan Yu ◽  
Tian Dong Xia ◽  
Wan Wu Ding ◽  
Xiao Jun Wang ◽  
Wen Jun Zhao

This paper briefly explains some of the theoretical issues associated with life-cycle energy analysis and then uses an Al-Cu dissimilar metals welding product case study to demonstrate its use in evaluating alternative design strategies for an energy efficient welding product. The energy consuming characteristic and the life-cycle model of welding product have been studied by the energy analysis method. The energy consumption model of welding product throughout life-cycle has been modelled. The energy properties of different welding method has been studied and described quantitatively by the energy analysis method of total life-cycle. The results show that an effective brazing technology is the key to improve the utilization ratio of energy.


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 230
Author(s):  
Hossein Omrany ◽  
Veronica Soebarto ◽  
Jian Zuo ◽  
Ruidong Chang

This paper aims to propose a comprehensive framework for a clear description of system boundary conditions in life cycle energy assessment (LCEA) analysis in order to promote the incorporation of embodied energy impacts into building energy-efficiency regulations (BEERs). The proposed framework was developed based on an extensive review of 66 studies representing 243 case studies in over 15 countries. The framework consists of six distinctive dimensions, i.e., temporal, physical, methodological, hypothetical, spatial, and functional. These dimensions encapsulate 15 components collectively. The proposed framework possesses two key characteristics; first, its application facilitates defining the conditions of a system boundary within a transparent context. This consequently leads to increasing reliability of obtained LCEA results for decision-making purposes since any particular conditions (e.g., truncation or assumption) considered in establishing the boundaries of a system under study can be revealed. Second, the use of a framework can also provide a meaningful basis for cross comparing cases within a global context. This characteristic can further result in identifying best practices for the design of buildings with low life cycle energy use performance. Furthermore, this paper applies the proposed framework to analyse the LCEA performance of a case study in Adelaide, Australia. Thereafter, the framework is utilised to cross compare the achieved LCEA results with a case study retrieved from literature in order to demonstrate the framework’s capacity for cross comparison. The results indicate the capability of the framework for maintaining transparency in establishing a system boundary in an LCEA analysis, as well as a standardised basis for cross comparing cases. This study also offers recommendations for policy makers in the building sector to incorporate embodied energy into BEERs.


2021 ◽  
Vol 13 (14) ◽  
pp. 7990
Author(s):  
Suman Paneru ◽  
Forough Foroutan Jahromi ◽  
Mohsen Hatami ◽  
Wilfred Roudebush ◽  
Idris Jeelani

Traditional energy analysis in Building Information Modeling (BIM) only accounts for the energy requirements of building operations during a portion of the occupancy phase of the building’s life cycle and as such is unable to quantify the true impact of buildings on the environment. Specifically, the typical energy analysis in BIM does not account for the energy associated with resource formation, recycling, and demolition. Therefore, a comprehensive method is required to analyze the true environmental impact of buildings. Emergy analysis can offer a holistic approach to account for the environmental cost of activities involved in building construction and operation in all its life cycle phases from resource formation to demolition. As such, the integration of emergy analysis with BIM can result in the development of a holistic sustainability performance tool. Therefore, this study aimed at developing a comprehensive framework for the integration of emergy analysis with existing Building Information Modeling tools. The proposed framework was validated using a case study involving a test building element of 8’ × 8’ composite wall. The case study demonstrated the successful integration of emergy analysis with Revit®2021 using the inbuilt features of Revit and external tools such as MS Excel. The framework developed in this study will help in accurately determining the environmental cost of the buildings, which will help in selecting environment-friendly building materials and systems. In addition, the integration of emergy into BIM will allow a comparison of various built environment alternatives enabling designers to make sustainable decisions during the design phase.


Sign in / Sign up

Export Citation Format

Share Document