scholarly journals Studies on Effect of Fused Deposition Modelling Process Parameters on Ultimate Tensile Strength and Dimensional Accuracy of Nylon

Author(s):  
C K Basavaraj ◽  
M Vishwas
2020 ◽  
Vol 27 ◽  
pp. 1794-1800
Author(s):  
R. Srinivasan ◽  
N. Aravindkumar ◽  
S. Aravind Krishna ◽  
S. Aadhishwaran ◽  
John George

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Godfrey C. Onwubolu ◽  
Farzad Rayegani

While fused deposition modelling (FDM) is one of the most used additive manufacturing (AM) techniques today due to its ability to manufacture very complex geometries, the major research issues have been to balance ability to produce aesthetically appealing looking products with functionality. In this study, five important process parameters such as layer thickness, part orientation, raster angle, raster width, and air gap have been considered to study their effects on tensile strength of test specimen, using design of experiment (DOE). Using group method of data handling (GMDH), mathematical models relating the response with the process parameters have been developed. Using differential evolution (DE), optimal process parameters have been found to achieve good strength simultaneously for the response. The optimization of the mathematical model realized results in maximized tensile strength. Consequently, the additive manufacturing part produced is improved by optimizing the process parameters. The predicted models obtained show good correlation with the measured values and can be used to generalize prediction for process conditions outside the current study. Results obtained are very promising and hence the approach presented in this paper has practical applications for design and manufacture of parts using additive manufacturing technologies.


Sign in / Sign up

Export Citation Format

Share Document