scholarly journals Optimized Latching Control of Floating Point Absorber Wave Energy Converter

Author(s):  
Chaitanya Gadodia ◽  
Shubham Shandilya ◽  
Hari Om Bansal
2020 ◽  
Vol 157 ◽  
pp. 353-367
Author(s):  
Yong Ma ◽  
Aiming Zhang ◽  
Lele Yang ◽  
Hao Li ◽  
Zhenfeng Zhai ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (3) ◽  
pp. 641 ◽  
Author(s):  
Brecht Devolder ◽  
Vasiliki Stratigaki ◽  
Peter Troch ◽  
Pieter Rauwoens

Author(s):  
Tomoki Taniguchi ◽  
Shunka C. Hirao ◽  
Kentaroh Kokubun ◽  
Tadashi Nimura ◽  
Shigesuke Ishida ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1731
Author(s):  
Dan Montoya ◽  
Elisabetta Tedeschi ◽  
Luca Castellini ◽  
Tiago Martins

Wave energy is nowadays one of the most promising renewable energy sources; however, wave energy technology has not reached the fully-commercial stage, yet. One key aspect to achieve this goal is to identify an effective control strategy for each selected Wave Energy Converter (WEC), in order to extract the maximum energy from the waves, while respecting the physical constraints of the device. Model Predictive Control (MPC) can inherently satisfy these requirements. Generally, MPC is formulated as a quadratic programming problem with linear constraints (e.g., on position, speed and Power Take-Off (PTO) force). Since, in the most general case, this control technique requires bidirectional power flow between the PTO system and the grid, it has similar characteristics as reactive control. This means that, under some operating conditions, the energy losses may be equivalent, or even larger, than the energy yielded. As many WECs are designed to only allow unidirectional power flow, it is necessary to set nonlinear constraints. This makes the optimization problem significantly more expensive in terms of computational time. This work proposes two MPC control strategies applied to a two-body point absorber that address this issue from two different perspectives: (a) adapting the MPC formulation to passive loading strategy; and (b) adapting linear constraints in the MPC in order to only allow an unidirectional power flow. The results show that the two alternative proposals have similar performance in terms of computational time compared to the regular MPC and obtain considerably more power than the linear passive control, thus proving to be a good option for unidirectional PTO systems.


2021 ◽  
pp. 108767
Author(s):  
Ru Xi ◽  
Haicheng Zhang ◽  
DaolinXu ◽  
Huai Zhao ◽  
Ramnarayan Mondal

Author(s):  
Pedro C. Vicente ◽  
Anto´nio F. O. Falca˜o ◽  
Paulo A. P. Justino

Floating point absorbers devices are a large class of wave energy converters for deployment offshore, typically in water depths between 40 and 100m. As floating oil and gas platforms, the devices are subject to drift forces due to waves, currents and wind, and therefore have to be kept in place by a proper mooring system. Although similarities can be found between the energy converting systems and floating platforms, the mooring design requirements will have some important differences between them, one of them associated to the fact that, in the case of a wave energy converter, the mooring connections may significantly modify its energy absorption properties by interacting with its oscillations. It is therefore important to examine what might be the more suitable mooring design for wave energy devices, according to the converters specifications. When defining a mooring system for a device, several initial parameters have to be established, such as cable material and thickness, distance to the mooring point on the bottom, and which can influence the device performance in terms of motion, power output and survivability. Different parameters, for which acceptable intervals can be established, will represent different power absorptions, displacements from equilibrium position, load demands on the moorings and of course also different costs. The work presented here analyzes what might be, for wave energy converter floating point absorber, the optimal mooring configuration parameters, respecting certain pre-established acceptable intervals and using a time-domain model that takes into account the non-linearities introduced by the mooring system. Numerical results for the mooring forces demands and also motions and absorbed power, are presented for two different mooring configurations for a system consisting of a hemispherical buoy in regular waves and assuming a liner PTO.


Sign in / Sign up

Export Citation Format

Share Document