scholarly journals Benefits of lubricant oil analysis for maintenance decision support: a case study

Author(s):  
V V Karanović ◽  
M T Jocanović ◽  
J M Wakiru ◽  
M D Orošnjak
2017 ◽  
Vol 23 (3) ◽  
pp. 310-325 ◽  
Author(s):  
Stephen Mayowa Famurewa ◽  
Liangwei Zhang ◽  
Matthias Asplund

Purpose The purpose of this paper is to present a framework for maintenance analytics that is useful for the assessment of rail condition and for maintenance decision support. The framework covers three essential maintenance aspects: diagnostic, prediction and prescription. The paper also presents principal component analysis (PCA) and local outlier factor methods for detecting anomalous rail wear occurrences using field measurement data. Design/methodology/approach The approach used in this paper includes a review of the concept of analytics and appropriate adaptation to railway infrastructure maintenance. The diagnostics aspect of the proposed framework is demonstrated with a case study using historical rail profile data collected between 2007 and 2016 for nine sharp curves on the heavy haul line in Sweden. Findings The framework presented for maintenance analytics is suitable for extracting useful information from condition data as required for effective rail maintenance decision support. The findings of the case study include: combination of the two statistics from PCA model (T2 and Q) can help to identify systematic and random variations in rail wear pattern that are beyond normal: the visualisation approach is a better tool for anomaly detection as it categorises wear observations into normal, suspicious and anomalous observations. Practical implications A practical implication of this paper is that the framework and the diagnostic tool can be considered as an integral part of e-maintenance solution. It can be easily adapted as online or on-board maintenance analytic tool with data from automated vehicle-based measurement system. Originality/value This research adapts the concept of analytics to railway infrastructure maintenance for enhanced decision making. It proposes a graphical method for combining and visualising different outlier statistics as a reliable anomaly detection tool.


2021 ◽  
Vol 1 ◽  
pp. 2701-2710
Author(s):  
Julie Krogh Agergaard ◽  
Kristoffer Vandrup Sigsgaard ◽  
Niels Henrik Mortensen ◽  
Jingrui Ge ◽  
Kasper Barslund Hansen ◽  
...  

AbstractMaintenance decision making is an important part of managing the costs, effectiveness and risk of maintenance. One way to improve maintenance efficiency without affecting the risk picture is to group maintenance jobs. Literature includes many examples of algorithms for the grouping of maintenance activities. However, the data is not always available, and with increasing plant complexity comes increasingly complex decision requirements, making it difficult to leave the decision making up to algorithms.This paper suggests a framework for the standardisation of maintenance data as an aid for maintenance experts to make decisions on maintenance grouping. The standardisation improves the basis for decisions, giving an overview of true variance within the available data. The goal of the framework is to make it simpler to apply tacit knowledge and make right decisions.Applying the framework in a case study showed that groups can be identified and reconfigured and potential savings easily estimated when maintenance jobs are standardised. The case study enabled an estimated 7%-9% saved on the number of hours spent on the investigated jobs.


Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 42
Author(s):  
Gerald Norbert Souza da Silva ◽  
Márcia Maria Guedes Alcoforado de Moraes

The development of adequate modeling at the basin level to establish public policies has an important role in managing water resources. Hydro-economic models can measure the economic effects of structural and non-structural measures, land and water management, ecosystem services and development needs. Motivated by the need of improving water allocation using economic criteria, in this study, a Spatial Decision Support System (SDSS) with a hydro-economic optimization model (HEAL system) was developed and used for the identification and analysis of an optimal economic allocation of water resources in a case study: the sub-middle basin of the São Francisco River in Brazil. The developed SDSS (HEAL system) made the economically optimum allocation available to analyze water allocation conflicts and trade-offs. With the aim of providing a tool for integrated economic-hydrological modeling, not only for researchers but also for decision-makers and stakeholders, the HEAL system can support decision-making on the design of regulatory and economic management instruments in practice. The case study results showed, for example, that the marginal benefit function obtained for inter-basin water transfer, can contribute for supporting the design of water pricing and water transfer decisions, during periods of water scarcity, for the well-being in both basins.


Sign in / Sign up

Export Citation Format

Share Document