scholarly journals Strength and deformation property enhancement of compressed steel tube-concrete elements using super concrete and thin-shell structure

Author(s):  
M Yu Narkevich ◽  
A I Sagadatov
2012 ◽  
Vol 446-449 ◽  
pp. 2554-2559 ◽  
Author(s):  
Jian Jun Cai ◽  
Feng Zhang ◽  
Wei Cui ◽  
Shou Shan Chen ◽  
Pu Lun Liu

In order to effectively assess the concrete strength and deformation property under sea water erosion environment, concrete stress and strain curve was researched with the number of wet and dry cycle of 0 times, 10 times , 20 times, 30 times, 40 times, 50 times and 60 times based on the large-scale static and dynamic stiffness servo test set. The stress - strain curves of concrete was tested for the lateral pressure 10.8MPa, 14.4MPa, and 18.8MPa at different dry-wet cycles, The failure modes and superficial cracking characteristics of specimens are reported at different dry-wet cycles. Concrete elastic modulus and compressive strength were researched. Based on concrete mechanical theory , the classic Kufer-Gerstle strength criteria of concrete was used, a large number of test samples of multivariate data were nonlinear regressed, a biaxial concrete strength criterion was established taking into account the stress ratio and the number of dry-wet cycles.


Author(s):  
Sietse Witterholt ◽  
Roel Schipper ◽  
Steffen Grünewald ◽  
Pierre Hoogenboom ◽  
Rob Nijsse ◽  
...  

Author(s):  
Zhangfan Xu ◽  
Sisi Di ◽  
Song Pan ◽  
Lei Chen ◽  
Weiqing Huang

The rotor deformation of an ultrasonic motor is an important factor affecting its performance. However, little research focuses on the relationship between the rotor deformation and motor performance. This paper provides an approach to improve the ultrasonic motor's output properties by changing the rotor's size from the view of proper rotor deformation and better stress distribution on the interface. First, a thin shell structure is introduced to study the deformation of the rotor. A finite element model of the motor is built in COMSOL Multiphysics software for the contact analysis of the stress distribution. Then, the optimized ranges of parameters are determined by simulation. Frictional experiments are conducted to verify the feasibility of the rotor under the optimized size. Finally, the performance experiments of a stator corresponding to different sizes of rotor are carried out. The experimental results show that the speed, the power and the efficiency of the optimized rotor are all increase. These results prove the effectivity of the new approach to improving the performance of the ultrasonic motor.


2011 ◽  
Vol 47 (5) ◽  
pp. 1450-1453 ◽  
Author(s):  
A. Viana ◽  
L.-L. Rouve ◽  
O. Chadebec ◽  
G. Cauffet ◽  
J.-L. Coulomb

2011 ◽  
Vol 44 (23) ◽  
pp. 232002 ◽  
Author(s):  
Lee Walsh ◽  
Rubén Meza ◽  
Eugenio Hamm
Keyword(s):  

2007 ◽  
Vol 13 (2) ◽  
pp. 131-141 ◽  
Author(s):  
Artiomas Kuranovas ◽  
Audronis Kazimieras Kvedaras

Behaviour of composite steel‐concrete elements in various loading stages is quite well analysed by theoretical investigations and experiments. Concrete‐Filled Steel Tube (CFST) is one of many composite elements used at present in civil engineering. Different approaches and design philosophies were adopted in different design codes for it. But for hollow CFST elements, which are more effective than ordinary CFST, any code does not provide information about how to design these elements. Further investigations of hollow composite CFST elements are needed. In loading stage, when a particular level of stresses exists, an interaction between steel tube and concrete core appears and therefore a complex stress state of element takes place, which increases the load‐bearing capacity of the whole composite element. This interaction between components of CFST elements is reached because of different material properties, such as Poisson's ratio, elasticity modulus etc. In this article reasons of the above‐mentioned complex stress state appearance and behaviour of hollow CFST element components in different load stages of compressed stub structural member are analysed. The test results are presented in diagrams, tables. Previous researches of other investigators are summarised. Differences and similarities in behaviour of solid concrete and composite elements and hollow members with different number of concrete core layers are discussed.


Sign in / Sign up

Export Citation Format

Share Document