scholarly journals Generating Test Data for Path Coverage Based on Genetic Algorithm

Author(s):  
Shuping Fan ◽  
Baoying Ma ◽  
Nianmin Yao ◽  
Yan Zhang ◽  
Chunyan Xia ◽  
...  
2013 ◽  
Vol 709 ◽  
pp. 616-619
Author(s):  
Jing Chen

This paper proposes a genetic algorithm-based method to generate test cases. This method provides information for test case generation using state machine diagrams. Its feature is realizing automation through fewer generated test cases. In terms of automatic generation of test data based on path coverage, the goal is to build a function that can excellently assess the generated test data and guide the genetic algorithms to find the targeting parameter values.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242812
Author(s):  
Shayma Mustafa Mohi-Aldeen ◽  
Radziah Mohamad ◽  
Safaai Deris

Path testing is the basic approach of white box testing and the main approach to solve it by discovering the particular input data of the searching space to encompass the paths in the software under test. Due to the increasing software complexity, exhaustive testing is impossible and computationally not feasible. The ultimate challenge is to generate suitable test data that maximize the coverage; many approaches have been developed by researchers to accomplish path coverage. The paper suggested a hybrid method (NSA-GA) based on Negative Selection Algorithm (NSA) and Genetic Algorithm (GA) to generate an optimal test data avoiding replication to cover all possible paths. The proposed method modifies the generation of detectors in the generation phase of NSA using GA, as well as, develops a fitness function based on the paths’ prioritization. Different benchmark programs with different data types have been used. The results show that the hybrid method improved the coverage percentage of the programs’ paths, even for complicated paths and its ability to minimize the generated number of test data and enhance the efficiency even with the increased input range of different data types used. This method improves the effectiveness and efficiency of test data generation and maximizes search space area, increasing percentage of path coverage while preventing redundant data.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Yiming Li ◽  
Qin Shi ◽  
Duoyang Qiu

This paper describes a valuable linear yaw-roll tractor-semitrailer (TST) model with five-degree-of-freedom (DOFs) for control algorithm development when steering and braking. The key parameters, roll stiffness, axle cornering stiffness, and fifth-wheel stiffness, are identified by the genetic algorithm (GA) and multistage genetic algorithm (MGA) based on TruckSim outputs to increase the accuracy of the model. Thus, the key parameters of the simplified model can be modified according to the real-time vehicle states by online lookup table and interpolation. The TruckSim vehicle model is built referring to the real tractor (JAC-HFC4251P1K7E33ZTF6×2) and semitrailer (Luyue LHX9406) used in the field test later. The validation of the linear yaw-roll model of a tractor-semitrailer using field test data is presented in this paper. The field test in the performance testing ground is detailed, and the test data of roll angle, roll rate, and yaw rate are compared with the outputs of the model with maps of the key parameters. The results indicate that the error of the tractor’s roll angle and semitrailer’s roll angle between model data and test data is 1.13% and 1.24%, respectively. The roll rate and yaw rate of the tractor and semitrailer are also in good agreement.


Sign in / Sign up

Export Citation Format

Share Document