scholarly journals Power optimization method for wireless power transmission system based on improved differential evolution algorithm

Author(s):  
Yu Tian ◽  
Tinghui Li
Author(s):  
Zhang Xiao-bo ◽  
Wang Zhan-xue

In this paper, a double bypass variable cycle engine with FLADE (Fan on Blade) is considered. The FLADE VCE is one of the research hotspots for future military and civil aircraft power device, which shows outstanding performance advantages. Compared to the mixed-flow turbofan, FLADE VCE is more complex than conventional aero-engine for its multi-components and multi-variable parts, which make it difficult to modeling and optimization. For getting the performance of FLADE VCE, the model for engine performance simulation is researched. The method for FLADE performance simulation and the steady-state performance simulation model for FLADE VCE are developed. And a component-based engine performance simulation system is established based on object-oriented modeling method. For obtaining the optimal integrated performance of FLADE VCE, suitable optimization method is required. Unfortunately, the optimization of FLADE VCE is a non-linear non-differentiable problem, which makes it difficult to solve by conventional deterministic optimization method. In order to solve this problem, the differential evolution (DE) algorithm is considered. To overcome the limitations of original DE algorithm, an improved DE algorithm with modifying mutation operator is proposed by this paper. The FLADE VCE optimization problem is solved by employing the improved DE algorithm.


Author(s):  
Haiqing Liu ◽  
Jinmeng Qu ◽  
Yuancheng Li

Background: As more and more renewable energy such as wind energy is connected to the power grid, the static economic dispatch in the past cannot meet its needs, so the dynamic economic dispatch of the power grid is imperative. Methods: Hence, in this paper, we proposed an Improved Differential Evolution algorithm (IDE) based on Differential Evolution algorithm (DE) and Artificial Bee Colony algorithm (ABC). Firstly, establish the dynamic economic dispatch model of wind integrated power system, in which we consider the power balance constraints as well as the generation limits of thermal units and wind farm. The minimum power generation costs are taken as the objectives of the model and the wind speed is considered to obey the Weibull distribution. After sampling from the probability distribution, the wind speed sample is converted into wind power. Secondly, we proposed the IDE algorithm which adds the local search and global search thoughts of ABC algorithm. The algorithm provides more local search opportunities for individuals with better evolution performance according to the thought of artificial bee colony algorithm to reduce the population size and improve the search performance. Results: Finally, simulations are performed by the IEEE-30 bus example containing 6 generations. By comparing the IDE with the other optimization model like ABC, DE, Particle Swarm Optimization (PSO), the experimental results show that obtained optimal objective function value and power loss are smaller than the other algorithms while the time-consuming difference is minor. The validity of the proposed method and model is also demonstrated. Conclusion: The validity of the proposed method and the proposed dispatch model is also demonstrated. The paper also provides a reference for economic dispatch integrated with wind power at the same time.


2021 ◽  
Vol 7 ◽  
pp. 411-418
Author(s):  
Jiawen Peng ◽  
Liyan Zhang ◽  
Qihong Chen ◽  
Rong Long ◽  
Keliang Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document