Volume 1: Compressors, Fans and Pumps; Turbines; Heat Transfer; Combustion, Fuels and Emissions
Latest Publications


TOTAL DOCUMENTS

69
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791858509

Author(s):  
Sangjukta Devi ◽  
Niranjan Sahoo

The present work describes the state-of-the-art technology for a Sideway Faced Porous Radiant Burner (SFPRB) of 10–15 kW capacity, operated by liquefied petroleum gas (LPG) applicable for industrial furnace and incinerator. The newly developed SFPRB is a two layer burner, consisting of a reaction zone and a preheat zone. The combustion zone is of reticulated SiC ceramic matrix of porosity 90%, diameter 120 mm and thickness 20 mm and the preheat zone is of Al2O3 ceramic having 463 through holes (diameter 1.5 mm), with 15 mm thickness and 120 mm diameter. The work presents the effect of geometrical parameters (length of mixing pipe and diameter of orifice) on the radial temperature distribution of burner surface. Experimentation has been done in 15 kW input power to study the behavior of air-fuel mixture entering the burner. Ultimately, it is focused for uniform temperature distribution on the burner surface with a suitable arrangement. The work also presents a detailed account of the temperature distribution along the two main burner axes and the emission measurements (CO and NOx) for the suitable SFPRB. Investigation was done for an input power range of 10–15 kW with an equivalence ratio of 0.5.



Author(s):  
Pravin Nakod ◽  
Saurabh Patwardhan ◽  
Ishan Verma ◽  
Stefano Orsino

Emission standard agencies are coming up with more stringent regulations on soot, given its adverse effect on human health. It is expected that Environmental Protection Agency (EPA) will soon place stricter regulations on allowed levels of the size of soot particles from aircraft jet engines. Since, aircraft engines operate at varying operating pressure, temperature and air-fuel ratios, soot fraction changes from condition to condition. Computation Fluid Dynamics (CFD) simulations are playing a key role in understanding the complex mechanism of soot formation and the factors affecting it. In the present work, soot formation prediction from numerical analyses for turbulent kerosene-air diffusion jet flames at five different operating pressures in the range of 1 atm. to 7 atm. is presented. The geometrical and test conditions are obtained from Young’s thesis [1]. Coupled combustion-soot simulations are performed for all the flames using steady diffusion flamelet model for combustion and Mass-Brookes-Hall 2-equation model for soot with a 2D axisymmetric mesh. Combustion-Soot coupling is required to consider the effect of soot-radiation interaction. Simulation results in the form of axial and radial profiles of temperature, mixture fraction and soot volume fraction are compared with the corresponding experimental measured profiles. The results for temperature and mixture fraction compare well with the experimental profiles. Predicted order of magnitude and the profiles of the soot volume fraction also compare well with the experimental results. The correct trend of increasing the peak soot volume fraction with increasing the operating pressure is also captured.



Author(s):  
Kirubakaran Purushothaman ◽  
Sankar Kumar Jeyaraman ◽  
Ajay Pratap ◽  
Kishore Prasad Deshkulkarni

This paper describes a methodology for obtaining correct blade geometry of high aspect ratio axial compressor blades during running condition taking into account of blade untwist and bending. It discusses the detailed approach for generating cold blade geometry for axial compressor rotor blades from the design blade geometry using fluid structure interaction technique. Cold blade geometry represents the rotor blade shape at rest, which under running condition deflects and takes a new operating blade shape under centrifugal and aerodynamic loads. Aerodynamic performance of compressor primarily depends on this operating rotor blade shape. At design point it is expected to have the operating blade shape same as the intended design blade geometry and a slight mismatch will result in severe performance deterioration. Starting from design blade profile, an appropriate cold blade profile is generated by applying proper lean and pre-twist calculated using this methodology. Further improvements were carried out to arrive at the cold blade profile to match the stagger of design profile at design operating conditions with lower deflection and stress for first stage rotor blade. In rear stages, thermal effects will contribute more towards blade deflection values. But due to short blade span, deflection and untwist values will be of lower values. Hence difference between cold blade and design blade profile would be small. This methodology can especially be used for front stage compressor rotor blades for which aspect ratio is higher and deflections are large.



Author(s):  
Devendra Dandotiya ◽  
Nitin D. Banker

The power output of a gas turbine plant decreases with the increase in ambient temperature. Moreover, the ambient temperature fluctuates about 15–20°C in a day. Hence, cooling of intake air makes a noticeable improvement to the gas turbine performance. In this regard, various active cooling techniques such as vapor compression refrigeration, vapor absorption refrigeration, vapor adsorption refrigeration and evaporative cooling are applied for the cooling of intake air. This paper presents a new passive cooling technique where the intake air temperature is reduced by incorporating phase change material (PCM) based heat exchanger parallel to conventional air intake line. During the daytime, the air is passed through the PCM which has melting temperature lower than the peak ambient temperature. This will reduce the ambient air temperature before taking to the compressor. Once the PCM melts completely, the required ambient air would be drawn from the ambient through conventional air intake arrangement. During the night, when there is lower ambient temperature, PCM converts from liquid to solid. The selected PCM has a melting temperature less than the peak ambient temperature and higher than the minimum ambient temperature. It is observed from the numerical modeling of the PCM that about four hours are required for the melting of PCM and within this time, the intake air can also be cooled by 5°C. The thermodynamic analysis of the results showed about 5.2% and 5.2% improvement in net power output and thermal efficiency, respectively for four hours at an ambient temperature of 45°C.



Author(s):  
Korukonda Venkata Lakshmi Narayana Rao ◽  
B. V. S. S. S. Prasad ◽  
Ch. Kanna Babu ◽  
Girish K. Degaonkar

The Gas turbine combustion chamber is the highest thermally loaded component where the temperature of the combustion gases is higher than the melting point of the liner that confines the gases. Combustor liner temperatures have to be evaluated at all the operating conditions in the operating envelope to ensure a satisfactory liner life and structural integrity. On experimental side the combustion chamber rig testing involves a lot of time and is very expensive, while the numerical computations and simulations has to be validated with the experimental results. This paper is mainly based on the work carried out in validating the liner temperatures of a straight flow annular combustion chamber for an aero engine application. Limited experiments have been carried out by measuring the liner wall temperatures using k-type thermocouples along the liner axial length. The experiments on the combustion chamber testing are carried out at the engine level testing. The liner temperature which is numerically computed by CHT investigations using CFX code is verified with the experimental data. This helped in better understanding the flow characterization around and along the liner wall. The main flow variables used are the mass flow rate, temperature and the pressure at the combustor inlet. Initially, the fuel air ratio is used accordingly to maintain the same T4/T3 ratio. The effect of liner temperature with T3 is studied. Since T4 is constant, the liner temperature is only dependent on T3 and follows a specific temperature distribution for the given combustor geometry. Hence this approach will be very useful in estimating the liner temperatures at any given T3 for a given combustor geometry. Further the liner temperature is also estimated at other fuel air ratios (different T4/T3 ratios) by using the verified CHT numerical computations and found that TL/T3 remains almost constant for any air fuel ratio that is encountered in the operating envelope of the aero engine.



Author(s):  
Anjali Dwivedi ◽  
Ankit Verma ◽  
S. Sarkar

Film cooling is one of the preferred methods for effective cooling of a gas turbine that forms a protective layer between hot flue gases and blade surface. This paper investigates the interaction of mist in the secondary flow and physics indicating the upper limit of mist concentration. Numerical simulations are performed on a flat plate having a series of discrete holes with 35 degree streamwise orientation and the holes are connected to a common delivery plenum chamber. The blowing ratio, density ratio and Reynolds number based on freestream and hole diameter (D) are 0.5, 1.2 and 15885 respectively. A two-phase mist consisting of finely dispersed water droplets of 10 micron in an airstream is introduced as the coolant from these holes. The latent heat absorbed by the evaporating droplets significantly reduces the sensible heat of the main stream, providing heat sinks that result in enhanced cooling effectiveness. The coupling between the two-phases is modelled through the interaction terms in the transport equations. Computations are performed by ANSYS Fluent 15.0 using k-ε realizable model. The results illustrate insight of complex transport phenomena associated with the mist of varying concentration from 2% to 7%. It has been observed that the maximum enhancement of cooling effectiveness reaches 43% at X/D = 10 for 2% mist by mass with an average enhancement of 26.5%. For 3% mist, the maximum enhancement becomes 80% at X/D = 16 with the average cooling enhancement of 43%. Mist concentrations 5% and beyond trend to increase average cooling because of more absorption of latent heat by droplets, but its trajectories shift towards wall, detrimental to the blade due to corrosion effect and thermal stresses.



Author(s):  
Kirubakaran Purushothaman ◽  
Sankar Kumar Jeyaraman ◽  
Ajay Pratap ◽  
Kishore Prasad Deshkulkarni

This study discusses in detail the aeroelastic flutter investigation of a transonic axial compressor rotor using computational methods. Fluid structure interaction approach is used in this method to evaluate the unsteady aerodynamic force and work done of a vibrating blade in CFD domain. Energy method and work per cycle approach is adapted for this flutter prediction. A framework has been developed to estimate the work per cycle and aerodynamic damping ratio. Based on the aerodynamic damping ratio, occurrence of flutter is estimated for different inter blade phase angles. Initially, the baseline rotor blade design was having negative aerodynamic damping at part speed conditions. The main cause for this flutter occurrence was identified as large flow separation near blade tip region due to high incidence angles. The unsteadiness in the flow was leading to aerodynamic force fluctuation matching with natural frequency of blade, resulting in excitation of the blades. Hence axially skewed slot casing treatment was implemented to reduce the flow separation at blade tip region to alleviate the onset of flutter. By this method, the stall margin and aerodynamic damping of the test compressor was improved and flutter was avoided.



Author(s):  
Anand Mammen Thomas ◽  
Jensen Samuel ◽  
A. Ramesh

Mean-line modelling approach which has generally been applied to fixed geometry turbocharger turbines has been extended to predict the performance of the variable geometry turbine for different inlet blade angles. The model uses an initial assumption of turbine inlet pressure which was iteratively corrected based on outlet pressure boundary condition. The model was implemented in MATLAB and stable and convergent solutions were obtained using relaxation techniques for different operating conditions. Experiments were done on a state of the art transient diesel engine test bed using the same VGT turbine in the turbocharger at different engine torques and speeds. Using experimental data the model was calibrated for the aerodynamic blockage in the fixed nozzle and rotor blade passages. Results revealed that turbine overall pressure ratio can be predicted accurately if a blockage factor varying with nozzle blade orientation is used in the model.



Author(s):  
T. Karthikeyan ◽  
E. J. Avital ◽  
N. Venkatesan ◽  
A. Samad

Ocean stores a huge amount of energy and ocean current energy can be a viable source in future. In this article, an axial marine current turbine has been optimized to enhance its power coefficient through numerical modeling. The blade pitch-angle and number of blades are the design parameters chosen for the analysis to find the optimal design. A commercial code for CFD simulations with in-house optimization code was used for the analysis. It was found that, changing the blade pitch-angle and reducing the number of blades can improve the turbine’s coefficient of power. This is due to increase in lift and reduction of losses caused by turbulence near the downstream of the turbine. The article presents flow-simulation difficulties and characteristic curves to identify the differences between the actual and optimized turbine. The detailed flow physics is discussed and pictured in the post processed plots.



Author(s):  
Prathapanayaka Rajeevalochanam ◽  
R. Senthil Kumaran ◽  
S. N. Agnimitra Sunkara ◽  
Nilotpole Kalita ◽  
P. P. Sharath

The curvature of a turbine blade airfoil downstream of the throat location significantly affects its aerodynamic performance, specifically at Mach number close to unity. In the present work, a low aspect ratio (0.64), highly curved back airfoil corresponding to stator blade ‘mean’ section of a high-pressure (HP) turbine stage is studied. The details of the blade parameters, experimental test setup, CFD solver and numerical setup are explained in the paper. Its aerodynamic characteristics are obtained numerically using a commercial CFD solver and are compared to those from experimental cascade test results. For numerical assessment, CFD simulations are carried out on three configurations viz. (i) Full turbine stage (stator and rotor) domain (ii) Isolated turbine stator row domain (iii) Stator mean section airfoil cascade domain. The loss predictions obtained through CFD are also compared against the loss estimates calculated using two loss models. The experimental cascade pressure loss across the blade row at design point Mach number 0.996 increases to 250% of that at lower Mach numbers. This drastic increase is not desirable. But the airfoil performs appreciably well in a ‘stage’ setup i.e. with downstream rotor. Therefore, the present study brings out the behaviour of the stator airfoil performance in a linear cascade, annular cascade and stage environments.



Sign in / Sign up

Export Citation Format

Share Document