scholarly journals A method of controlling thermal crack for mass concrete structures: modelling and experimental study

Author(s):  
Hong-Ha Le ◽  
Chi-Cong Vu ◽  
Ngoc-Khoa Ho ◽  
Van-Thuc Luu
2020 ◽  
Vol 15 (5) ◽  
pp. 619-633
Author(s):  
Igor Shardakov ◽  
Irina Glot ◽  
Aleksey Shestakov ◽  
Roman Tsvetkov ◽  
Valeriy Yepin ◽  
...  

2013 ◽  
Vol 405-408 ◽  
pp. 2739-2742 ◽  
Author(s):  
Zhen Hong Wang ◽  
Shu Ping Yu ◽  
Yi Liu

To solve the problem of cracks developing on thin-walled concrete structures during construction, the authors expound on the causes of cracks and the crack mechanism. The difference between external and internal temperatures, basic temperature difference and constraints are the main reasons of crack development on thin-walled concrete structures. Measures such as optimizing concrete mixing ratio, improving construction technology, and reducing temperature difference can prevent thin-walled concrete structures from cracking. Moreover, water-pipe cooling technology commonly used in mass concrete can be applied to thin-walled concrete structures to reduce temperature difference. This method is undoubtedly a breakthrough in anti-cracking technology for thin-walled concrete structures, particularly for thin-walled high-performance concrete structures. In addition, a three-dimensional finite element method is adopted to simulate the calculation of temperature control and anti-cracking effects f. Results show the apparent temperature controlling effect of water-pipe cooling for thin-walled concrete structures.


Vestnik MGSU ◽  
2020 ◽  
pp. 380-398
Author(s):  
Nikolay A. Aniskin ◽  
Nguyen Trong Chuc

Introduction. The concreting of solid structures, such as concrete dams, bridge constructions, foundations of buildings and structures, is accompanied by exothermic heating, caused by cement hydration. Heat, emitted by mass concrete blocks, slowly leaves constructions. A substantial temperature difference frequently arises between the solid concrete centre and its surface. If this temperature difference reaches a critical value, thermal cracking occurs, which destroys structural continuity. Temperature problems and those associated with thermal stress state should be resolved to pre-assess and prevent potential cracking. This problem has enjoyed the attention of specialists, and it has been the subject of numerous research projects. Materials and methods. The overview is based on the information about implemented research projects focused on the thermal cracking of mass concrete dams and its prevention. Computer modeling techniques were applied to develop a mathematical model capable of projecting and assessing the potential cracking of mass concrete. Results. The co-authors have compiled an overview of advanced approaches to the assessment of potential thermal crack formation, contemporary problem-solving methods and selected research findings obtained using the finite element method. The co-authors offer a thermal behaviour/thermal stress state projection methodology for solid concrete, as well as a thermal crack formation assessment methodology. Conclusions. The thermal cracking problem has not been solved yet. The proposed methodology and a projection-oriented numerical model can be used as a reference by civil engineers in the process of designing and constructing concrete gravity dams. It may help to reduce cracking probability caused by heat evolution in cement.


2021 ◽  
Vol 54 (6) ◽  
Author(s):  
Jianda Xin ◽  
Yi Liu ◽  
Guoxin Zhang ◽  
Zhenhong Wang ◽  
Ning Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document