scholarly journals Chemical recycling of End-of-Life wind turbine blades by solvolysis/HTL

Author(s):  
C Mattsson ◽  
A André ◽  
M Juntikka ◽  
T Tränkle ◽  
R Sott
Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1124
Author(s):  
Leon Mishnaevsky Mishnaevsky

Various scenarios of end-of-life management of wind turbine blades are reviewed. “Reactive” strategies, designed to deal with already available, ageing turbines, installed in the 2000s, are discussed, among them, maintenance and repair, reuse, refurbishment and recycling. The main results and challenges of “pro-active strategies”, designed to ensure recyclability of new generations of wind turbines, are discussed. Among the main directions, the wind turbine blades with thermoplastic and recyclable thermoset composite matrices, as well as wood, bamboo and natural fiber-based composites were reviewed. It is argued that repair and reuse of wind turbine blades, and extension of the blade life has currently a number of advantages over other approaches. While new recyclable materials have been tested in laboratories, or in some cases on small or medium blades, there are remaining technological challenges for their utilization in large wind turbine blades.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4247
Author(s):  
Ebbe Bagge Paulsen ◽  
Peter Enevoldsen

Wind energy has seen an increase of almost 500 GW of installed wind power over the past decade. Renewable energy technologies have, over the years, been striving to develop in relation to capacity and size and, simultaneously, though with less focus on, the consequences and challenges that arise when the products achieve end-of-life (EoL). The lack of knowledge and possibilities for the recycling of fiber composites and, thus, the handling of EoL wind turbine blades (WTBs) has created great environmental frustrations. At present, the frustrations surrounding the handling are based on the fact that the most commonly used disposal method is via landfills. No recycling or energy/material recovery is achieved here, making it the least advantageous solution seen from the European Waste Commission’s perspective. The purpose of this research was thus to investigate the current recycling methods and to categorize them based on the waste materials. The opportunities were compared based on processing capacity, price, environment and technology readiness level (TRL), which concluded that recycling through co-processing in the cement industry is the only economical option at present that, at the same time, has the capabilities to handle large amounts of waste materials.


MARE-WINT ◽  
2016 ◽  
pp. 421-432 ◽  
Author(s):  
Justine Beauson ◽  
Povl Brøndsted

2009 ◽  
Vol 129 (5) ◽  
pp. 689-695
Author(s):  
Masayuki Minowa ◽  
Shinichi Sumi ◽  
Masayasu Minami ◽  
Kenji Horii

Sign in / Sign up

Export Citation Format

Share Document