scholarly journals Evaluation of ehe Geoecological Factors Influence on the Foundations’ Precipitation, Located on Anisotropic Soil Bases

Author(s):  
O Korobova ◽  
L Maksimenko
Keyword(s):  
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
V. Vázquez-Báez ◽  
A. Rubio-Arellano ◽  
D. García-Toral ◽  
I. Rodríguez Mora

We present a model of groundwater dynamics under stationary flow and, governed by Darcy’s law of water motion through porous media, we apply it to study a 2D aquifer with water table of constant slope comprised of a homogeneous and isotropic media; the more realistic case of an homogeneous anisotropic soil is also considered. Taking into account some geophysical parameters we develop a computational routine, in the Finite Difference Method, which solves the resulting elliptic partial equation, both in a homogeneous isotropic and in a homogeneous anisotropic media. After calibration of the numerical model, this routine is used to begin a study of the Ayamonte-Huelva aquifer in Spain, a modest analysis of the system is given, and we compute the average discharge vector as well as its root mean square as a first predictive approximation of the flux in this system, providing us a signal of the location of best exploitation; long term goal is to develop a complete computational tool for the analysis of groundwater dynamics.


2015 ◽  
Vol 12 (1) ◽  
pp. 1247-1277 ◽  
Author(s):  
S. Acharya ◽  
D. A. Kaplan ◽  
S. Casey ◽  
M. J. Cohen ◽  
J. W. Jawitz

Abstract. Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.


1984 ◽  
Vol 37 (3) ◽  
pp. 479-495 ◽  
Author(s):  
J. R. BOOKER ◽  
M. F. RANDOLPH
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document