sediment redistribution
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 29)

H-INDEX

25
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Paulina Grigusova ◽  
Annegret Larsen ◽  
Sebastian Achilles ◽  
Roland Brandl ◽  
Camilo del Río ◽  
...  

Abstract. Burrowing animals influence surface microtopography and hillslope sediment redistribution, but changes often remain undetected due to a lack of autonomous high resolution field monitoring techniques. In this study we present a new approach to quantify microtopographic variations and surface changes caused by burrowing animals and rainfall-driven erosional processes applied to remote field plots in arid and mediterranean Chile. We compared the mass balance of redistributed sediment within plot areas affected and not affected by burrowing animals, quantified the cumulative sediment redistribution caused by animals and rainfall, and upscaled the results to the hillslope scale. The new instrument showed a very good detection accuracy. The cumulative sediment redistribution within areas affected by burrowing animals was higher (−10.44 cm3 cm−2 year−1) in the mediterranean than the arid climate zone ( −1.41 cm3 cm−2 year−1). Daily sediment redistribution during rainfall within areas affected by burrowing animals were up to 350 % / 40 % higher in the mediterranean / arid zone compared to the unaffected areas, and much higher than previously reported in studies not based on continuous microtopographic monitoring. Furthermore, 38 % of the sediment eroding from the burrows accumulated within the burrow entrance while 62 % was incorporated into overall hillslope sediment flux. The cumulative sediment excavation by the animals was 14.62 cm3 cm−2 year−1 in the mediterranean and 16.41 cm3 cm−2 year−1 in the arid climate zone. Our findings can be implemented into long-term soil erosion models that rely on soil processes but do not yet include animal-induced surface processes on microtopographical scales in their algorithms.


2021 ◽  
Vol 9 (8) ◽  
pp. 851
Author(s):  
Claudia Romagnoli ◽  
Flavia Sistilli ◽  
Luigi Cantelli ◽  
Margherita Aguzzi ◽  
Nunzio De Nigris ◽  
...  

The coastal area at Riccione, in the southern Emilia-Romagna littoral region, is exposed to erosive processes, which are expected to be enhanced by climate change. The beach, mostly composed of fine sand, is maintained through various defense strategies, including frequent nourishment interventions for balancing the sediment deficit and other experimental solutions for reducing coastal erosion. Artificial reshaping of the beach and “common practices” in the sediment management redefine the beach morphology and the sediment redistribution almost continuously. These activities overlap each other and with the coastal dynamics, and this makes it very difficult to evaluate their effectiveness, as well as the role of natural processes on the beach morphological evolution. Topo-bathymetric and sedimentological monitoring of the beach has been carried out on a regular basis since 2000 by the Regional Agency for Prevention, Environment and Energy of Emilia-Romagna (Arpae). Further monitoring of the emerged and submerged beach has been carried out in 2019–2021 in the framework of the research project STIMARE, focusing on innovative strategies for coastal monitoring in relation with erosion risk. The aim of this study is to assess the coastal behavior at the interannual/seasonal scale in the southern coastal stretch of Riccione, where the adopted coastal defense strategies and management actions mostly control the morphological variations in the emerged and submerged beach besides the wave and current regime. The topo-bathymetric variations and erosion/accretion patterns provided by multitemporal monitoring have been related to natural processes and to anthropogenic activities. The morphological variations have been also assessed in volumetric terms in the different subzones of the beach, with the aim of better understanding the onshore/offshore sediment exchange in relation with nourishments and in the presence of protection structures. The effectiveness of the adopted interventions to combat erosion, and to cope with future climate change-related impacts, appears not fully successful in the presence of an overall sediment deficit at the coast. This demonstrates the need for repeated monitoring of the emerged and submerged beach in such a critical setting.


2021 ◽  
Author(s):  
Hari Ram Upadhayay ◽  
Steven J. Granger ◽  
Yusheng Zhang ◽  
Fabio Amorim ◽  
Luisa Cilione ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Pierre Giresse ◽  
Germain Bayon ◽  
Cedric Tallobre ◽  
Lies Loncke

Contourite sediment accumulations at continental margins are related to strong bottom water circulation, where intense winnowing can result in neoformation of authigenic grains of glauconite at the seafloor. In this study, we investigated whether such glauconite grains could faithfully record ambient bottom-water neodymium (Nd) isotopic compositions, and hence be used as paleoceanographic archives. To this purpose, we measured Nd isotopic compositions (εNd) in a series of glauconitic grains, foraminiferal assemblages, leached Fe-Mn oxyhydroxide phases, and detrital clays separated from a contourite sediment record at the Demerara slope off French Guiana (IG-KSF-11; 2370 m water depth), at a location where the present-day εNd distribution along the water column is well characterised. We show that the εNd composition of core-top glauconite grains (−12.0 ± 0.5) agrees with the expected NADW-like seawater signature at the same location and water depth (−11.6 ± 0.3), while departing from measured εNd values for corresponding detrital clays (−11.3 ± 0.2), foraminiferal (−10.9 ± 0.2), and Fe-Mn oxyhydroxide fractions (−9.2 ± 0.2). This finding indicates that glauconitic grains at this particular location are probably best suited for paleoceanographic reconstructions than foraminifera and leached Fe-oxyhydroxide fractions, which appear to be influenced by sediment redistribution and the presence of terrestrial continental Fe-oxides, respectively. Using rare earth elements (REE), we tentatively propose that the acquisition of seawater Nd isotopic signatures by glauconite is controlled by the presence of authigenic REE-bearing phosphate-rich phases intertwined within clay mineral sheets, while confirming previous findings that the process of glauconitisation results in the progressive loss of REE within glauconitic grains. Preliminary paleoceanographic implications suggest strengthened bottom-water circulation of the glacial analogue of NADW at this particular location and water depth, with a εNd signature (between −10.8 and −11.5) similar to that of modern NADW.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1966
Author(s):  
Matthew Balazs ◽  
Anupma Prakash ◽  
Gabriel Wolken

Six DEMs over a 10-year period were used to estimate flood-related sedimentation in the Japanese Creek drainage located in Seward, Alaska. We analyze two existing LiDAR DEMs and one GNSS-derived DEM along with three additional DEMs that we generated using differential Global Navigation Satellite System (dGNSS) and Structure from Motion (SfM) techniques. Uncertainties in each DEM were accounted for, and a DEMs of Difference (DoD) technique was used to quantify the amount and pattern of sediment introduced, redistributed, or exiting the system. Through correlating the changes in sediment budget with rainfall data and flood events, the study demonstrates that the major flood events in 2006 and 2012—the 7th and 5th highest precipitation events on record—resulted in an increased sedimentation in the drainage as a whole. At a minimum the 2006 and 2012 events increased the sediment in the lower reaches by 70,100 and 53,900 cubic meters, respectively. The study shows that the DoD method and using multiple technologies to create DEMs is effective in quantifying the volumetric change and general spatial patterns of sediment redistribution between the acquisition of DEMs.


2021 ◽  
Author(s):  
Friedrich Knuth ◽  
David Shean ◽  
Shashank Bhushan

<p>Mountain glaciers have lost significant mass over the past century in response to a globally warming climate. However, on interannual to decadal time scales, many glaciers in Western North America show periods of both advance and retreat. To better understand these systems and their sensitivity to climate forcing, we are generating regional records of glacier surface elevation change from scanned historical film photographs acquired between the 1950s to 1990s. Our results will help constrain projections of future glacier change under different climate scenarios, as well as impacts on downstream water resources and geohazard risk.</p><p>Historical image pre-processing and manual ground control point (GCP) selection are time-intensive bottlenecks during traditional SfM processing workflows. We developed an automated photogrammetry processing pipeline (HSfM) to systematically process large archives of vertical aerial film photographs and generate sub-meter resolution digital elevation models (DEMs), without manual GCP selection. We present several case studies for glaciers in the Western North America using photos from the USGS North American Glacier Aerial Photography (NAGAP) and Earth Explorer Aerial Photography Single Frame archives, which differ in terms of available image overlap, survey area extent, and terrain characteristics. Absolute vertical accuracy of <0.5-1.0 m is achieved through iterative closest point (ICP) co-registration over stable bare-ground surfaces between the historical DEMs and modern high-resolution satellite or lidar reference DEMs. We demonstrate the potential for these new DEM records to quantify geodetic glacier mass balance and geomorphological change including moraine deposition, moraine degradation, and sediment redistribution in proglacial areas.</p>


2021 ◽  
Author(s):  
Dante Föllmi ◽  
Jantiene Baartman ◽  
João Pedro Nunes ◽  
Akli Benali

<p><strong>Abstract</strong></p><p>Wildfires have become an increasing threat for Mediterranean ecosystems, due to increasing climate change induced wildfire activity and changing land management practices. Apart from the initial risk, fire can alter the soil in various ways depending on different fire severities and thus post-fire erosion processes are an important component in assessing wildfires’ negative effects. Recent post-fire erosion (modelling) studies often focus on a short time window and lack the attention for sediment dynamics at larger spatial scales. Yet, these large spatial and temporal scales are fundamental for a better understanding of catchment sediment dynamics and long-term destructive effects of multiple fires on post-fire erosion processes. In this study the landscape evolution model LAPSUS was used to simulate erosion and deposition in the 404 km<sup>2</sup> Águeda catchment in northern-central Portugal over a 41 year (1979-2020) timespan. To include variation in fire severity and its impact on the soil four burnt severity classes, represented by the difference Normalized Burn Ratio (dNBR), were parameterized. Although model calibration was difficult due to lack of spatial and temporal measured data, the results show that average post-fire net erosion rates were significantly higher in the wildfire scenarios (5.95 ton ha<sup>-1</sup> yr<sup>-1</sup>) compared to those of a non-wildfire scenario (0.58 ton ha<sup>-1</sup> yr<sup>-1</sup>). Furthermore, erosion values increased with a higher level of burnt severity and multiple fires increased the overall sediment build-up in the catchment, fostering an increase in background sediment yield. Simulated erosion patterns showed great spatial variability with large deposition and erosion rates inside streams. Due to this variability, it was difficult to identify land uses that were most sensitive for post-fire erosion, because some land-uses were located in more erosion-sensitive areas (e.g. streams, gullies) or were more affected by high burnt severity levels than others. Despite these limitations, LAPSUS performed well on addressing spatial sediment processes and has the ability to contribute to pre-fire management strategies. For instance, the percentage soil loss map (i.e. comparison of erosion and soil depth maps) could identify locations at risk.</p>


2021 ◽  
Vol 9 (2) ◽  
pp. 151
Author(s):  
Duccio Bertoni ◽  
Monica Bini ◽  
Marco Luppichini ◽  
Luigi Enrico Cipriani ◽  
Andrea Carli ◽  
...  

In this paper the evolution of the Northern Tuscany littoral cell is documented through a detailed analysis of the increasing anthropogenic pressure since the beginning of the 20th century. This sector of the Tuscany coast has been experiencing strong erosion effects that resulted in the loss of large volumes of sandy beaches. The anthropogenic impact on natural processes have been intensified by the construction of two ports in the early decades of the 20th century. Competent authorities reacted by building hard protection structures that tried to fix the position of the shoreline but offset the erosion drive downdrift. Therefore, in the last 20 years a regional Plan was undertaken to gradually replace the hard defense schemes with a softer approach, which involved a massive use of sediment redistribution activities. Many nourishments have been done ever since, using both sand and gravel. All these hard and soft protection operations have been archived in a geodatabase, and visualized in maps that clearly show the progressive change from hard to soft defense. This database may improve the approach to any future analysis of the littoral cell both in terms of research and management, while providing a practical example that may be easily replicated elsewhere.


Geomorphology ◽  
2021 ◽  
Vol 375 ◽  
pp. 107559
Author(s):  
Fatemeh Sedighi ◽  
Abdulvahed Khaledi Darvishan ◽  
Mohamad Reza Zare

2020 ◽  
pp. 1-15
Author(s):  
Jenna M. Zechmann ◽  
Martin Truffer ◽  
Roman J. Motyka ◽  
Jason M. Amundson ◽  
Chris F. Larsen

Abstract The recently-advancing Taku Glacier is excavating subglacial sediments at high rates over multi-decadal timescales. However, sediment redistribution over shorter timescales remains unquantified. We use a variety of methods to study subglacial and proglacial sediment redistribution on decadal, seasonal, and daily timescales to gain insight into sub- and proglacial landscape formation. Both excavation and deposition were observed from 2003 to 2015 (2.8 ± 0.9 m a−1 to +2.9 ± 0.9 m a−1). The observed patterns imply that a subglacial conduit has occupied the same site over the past decade. Outwash fans on the subaerial end moraine experience fluvial sediment reworking almost year-round, with net sediment gain in winter and net sediment loss in summer, and an overall mass gain between 2005 and 2015. We estimate that tens of meters of sediment still underlie the glacier terminus, sediments which can be remobilized during future activity. However, imminent retreat from the proglacial moraine will limit its sediment supply, leaving the moraine vulnerable to erosion by bordering rivers. Retreat into an over-deepened basin will leave the glacier vulnerable to increased frontal ablation and accelerating retreat.


Sign in / Sign up

Export Citation Format

Share Document