anisotropic soil
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 21)

H-INDEX

12
(FIVE YEARS 3)

Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 465
Author(s):  
Tingting Zhang ◽  
Xiangfeng Guo ◽  
Julien Baroth ◽  
Daniel Dias

A rotation of the anisotropic soil fabric pattern is commonly observed in natural slopes with a tilted stratification. This study investigates the rotated anisotropy effects on slope reliability considering spatially varied soils. Karhunen–Loève expansion is used to generate the random fields of the soil shear strength properties (i.e., cohesion and friction angle). The presented probabilistic analyses are based on a meta-model combining Sparse Polynomial Chaos Expansion (SPCE) and Global Sensitivity Analysis (GSA). This method allows the number of involved random variables to be reduced and then the computational efficiency to be improved. Two kinds of deterministic models, namely a discretization kinematic approach and a finite element limit analysis, are considered. A variety of valuable results (i.e., failure probability, probability density function, statistical moments of model response, and sensitivity indices of input variables) can be effectively provided. Moreover, the influences of the rotated anisotropy, autocorrelation length, coefficient of variation and cross-correlation between the cohesion and friction angle on the probabilistic analysis results are discussed. The rotation of the anisotropic soil stratification has a significant effect on the slope stability, particularly for the cases with large values of autocorrelation length, coefficient of variation, and cross-correlation coefficient.


2021 ◽  
Vol 137 ◽  
pp. 104279
Author(s):  
Weijian Liang ◽  
Shiwei Zhao ◽  
Huanran Wu ◽  
Jidong Zhao

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Qiongfang Zhang ◽  
Kang Cheng ◽  
Yadong Lou ◽  
Tangdai Xia ◽  
Panpan Guo ◽  
...  

Based on complex variable theory and conformal mapping method, the paper presents full plane elastic solutions around an unlined tunnel with arbitrary cross section in anisotropic soil. The solutions describe soil elastic solutions for assuming that the displacement vectors along the tunnel boundary are directed towards the center of the tunnel. Tunnels with different cross sections are used to illustrate the method and its correctness. An elliptical unlined tunnel case is discussed in detail in the paper. Using the image method, an approximate solution for predicting surface displacement and subsurface horizontal displacement around an unlined tunnel in anisotropic soil can be obtained. The results show anisotropic stiffness properties n n = E h / E v and m m = G v h / E v have a great effect on the displacement distribution patterns around an elliptical tunnel with certain shape.


Author(s):  
I.V. Voytenko ◽  

Abstract. Strength anisotropy is characteristic of layered soil bases and has been confirmed by numerous tests. The relevance and novelty of this research is to study the effect of the seismic factor on the active pressure of the friable soil medium having strength anisotropy. A numerical experiment was carried out using a specially developed computer program, the algorithm of which used the method for determining the lateral pressure of a heterogeneous anisotropic soil, taking into account the seismic effect. The proposed method is based on the solutions of the classical theory of Coulomb, the seismic component is taken into account on the basis of the static theory of the earthquake stability of structures. We considered a vertically ideally smooth wall in contact with a two-layer incoherent soil medium, the anisotropy of the strength properties of which is represented by hodographs of friction angle. The layers are parallel, no surface load. A numerical research was to determine the parameters of the active pressure of the soil of the lower layer during rotation of the hodograph of friction angle with steps of 300. We used 4 hodographs: 1) φ1=150-200; 2) φ2=200-250; 3) φ3=250-300; 4) φ4=300-350 with a horizontal plane of isotropy. Seismic impact was taken into account by the seismicity coefficient, taken equal to depending on the scale 0.025 (7), 0.05 (8), 0.1 (9). The horizontal orientation of the seismic force and with an angle of 200 to the horizontal plane was set. The obtained results make it possible to evaluate the seismic effect on the lateral pressure of anisotropic soil by comparing it with the corresponding indicators obtained earlier without taking into account the seismic factor. An analysis of computer solutions indicates the increase of the active pressure in seismic conditions by 14%-45% compared with the same indicator, which was determined without taking into account the seismic factor.


Sign in / Sign up

Export Citation Format

Share Document