scholarly journals Mid-infrared time-resolved photoconduction in black phosphorus

2D Materials ◽  
2016 ◽  
Vol 3 (4) ◽  
pp. 041006 ◽  
Author(s):  
Ryan J Suess ◽  
Edward Leong ◽  
Joseph L Garrett ◽  
Tong Zhou ◽  
Reza Salem ◽  
...  
Nanoscale ◽  
2021 ◽  
Author(s):  
Mithun K P ◽  
Srabani Kar ◽  
Abinash Kumar ◽  
Victor Suvisesha Muthu Dharmaraj ◽  
Ravishankar Narayanan ◽  
...  

Collective excitation of Dirac plasmons in graphene and topological insulators have opened new possibilities of tunable plasmonic materials ranging from THz to mid-infrared regions. Using time resolved Optical Pump -...


2003 ◽  
Vol 770 ◽  
Author(s):  
N.Q. Vinh ◽  
T. Gregorkiewicz

AbstractOne of the open questions in semiconductor physics is the origin of the small splittings of the excited states of bound excitons in silicon. A free electron laser as a tunable source of the mid-infrared radiation (MIR) can be used to investigate such splittings of the excited states of optical centers created by transition metal dopants in silicon. In the current study, the photoluminescence from silver and copper doped silicon is investigated by two color spectroscopy in the visible and the MIR. It is shown the PL due recombination of exciton bound to Ag and Cu is quenched upon application of the MIR beam. The time-resolved photoluminescence measurements and the quenching effects of these bands are presented. By scanning the wavelength of the free-electron laser ionization spectra of relevant traps involved in photoluminescence are obtained. The formation and dissociation of the bound excitons, and the small splittings of the effective-mass excited states are discussed. The applied experimental method allows correlation of DLTS data on trapping centers to specific channels of radiative recombination. It can be applied for spectroscopic analysis in materials science of semicondutors.


Author(s):  
Muhammad Ali Abbas ◽  
Luuk van Dijk ◽  
Khalil Eslami Jahromi ◽  
Mohammadreza Nematollahi ◽  
Frans J. M. Harren ◽  
...  

2020 ◽  
Vol 49 (2) ◽  
pp. 256-266 ◽  
Author(s):  
Peter Vöhringer

Time-resolved infrared spectroscopies are used to elucidate multiscalar photochemical processes of iron complexes.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6831
Author(s):  
Muhammad Ali Abbas ◽  
Luuk van Dijk ◽  
Khalil Eslami Jahromi ◽  
Mohammadreza Nematollahi ◽  
Frans J. M. Harren ◽  
...  

Conventional mechanical Fourier Transform Spectrometers (FTS) can simultaneously measure absorption and dispersion spectra of gas-phase samples. However, they usually need very long measurement times to achieve time-resolved spectra with a good spectral and temporal resolution. Here, we present a mid-infrared dual-comb-based FTS in an asymmetric configuration, providing broadband absorption and dispersion spectra with a spectral resolution of 5 GHz (0.18 nm at a wavelength of 3333 nm), a temporal resolution of 20 μs, a total wavelength coverage over 300 cm−1 and a total measurement time of ~70 s. We used the dual-comb spectrometer to monitor the reaction dynamics of methane and ethane in an electrical plasma discharge. We observed ethane/methane formation as a recombination reaction of hydrocarbon radicals in the discharge in various static and dynamic conditions. The results demonstrate a new analytical approach for measuring fast molecular absorption and dispersion changes and monitoring the fast dynamics of chemical reactions over a broad wavelength range, which can be interesting for chemical kinetic research, particularly for the combustion and plasma analysis community.


Nano Letters ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 1488-1493 ◽  
Author(s):  
Chen Chen ◽  
Feng Chen ◽  
Xiaolong Chen ◽  
Bingchen Deng ◽  
Brendan Eng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document