laser absorption
Recently Published Documents


TOTAL DOCUMENTS

2078
(FIVE YEARS 344)

H-INDEX

65
(FIVE YEARS 9)

2022 ◽  
Vol 238 ◽  
pp. 111962
Author(s):  
S.E. Johnson ◽  
Y. Ding ◽  
D.F. Davidson ◽  
R.K. Hanson

2022 ◽  
pp. 000370282110608
Author(s):  
Wubin Weng ◽  
Jim Larsson ◽  
Joakim Bood ◽  
Marcus Aldén ◽  
Zhongshan Li

Hydrogen chloride (HCl) monitoring during combustion/gasification of biomass fuels and municipal solid waste, such as polyvinyl chloride (PVC) and food residues, is demanded to avoid the adverse effect of HCl to furnace operation and to improve the quality of the gas products. Infrared tunable diode laser absorption spectroscopy (IR-TDLAS) is a feasible nonintrusive in-situ method for HCl measurements in harsh environments. In the present work, the measurement was performed using the R(3) line of the ν2 vibrational band of HCl at 5739.25 cm–1 (1742.4 nm). Water vapor is ubiquitous in combustion/gasification environments, and its spectral interference is one of the most common challenges for IR-TDLAS. Spectral analysis based on the current well-known databases was found to be insufficient to achieve an accurate measurement. The lack of accurate temperature-dependent water spectra can introduce thousands parts per million (ppm) HCl overestimation. For the first time, accurate spectroscopic data of temperature-dependent water spectra near 5739.3 cm–1 were obtained based on a systematic experimental investigation of the hot water lines in a well-controlled, hot flue gas with a temperature varying from 1100 to 1950 K. With the accurate knowledge of hot water interference, the HCl TDLAS system can achieve a detection limit of about 100 ppm⋅m at around 1500 K, and simultaneously the gas temperature can be derived. The technique was applied to measure the temporally resolved HCl release and local temperature over burning PVC particles in hot flue gas at 1790 K.


Fuels ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Olivier Mathieu ◽  
Sean P. Cooper ◽  
Sulaiman A. Alturaifi ◽  
Eric L. Petersen

Modern gas turbines use combustion chemistry during the design phase to optimize their efficiency and reduce emissions of regulated pollutants such as NOx. The detailed understanding of the interactions during NOx and natural gas during combustion is therefore necessary for this optimization step. To better assess such interactions, NO2 was used as a sole oxidant during the oxidation of CH4 and C2H6 (the main components of natural gas) in a shock tube. The evolution of the CO mole fraction was followed by laser-absorption spectroscopy from dilute mixtures at around 1.2 atm. The experimental CO profiles were compared to several modern detailed kinetics mechanisms from the literature: models tuned to characterize NOx-hydrocarbons interactions, base-chemistry models (C0–C4) that contain a NOx sub-mechanism, and a nitromethane model. The comparison between the models and the experimental profiles showed that most modern NOx-hydrocarbon detailed kinetics mechanisms are not very accurate, while the base chemistry models were lacking accuracy overall as well. The nitromethane model and one hydrocarbon/NOx model were in relatively good agreement with the data over the entire range of conditions investigated, although there is still room for improvement. The numerical analysis of the results showed that while the models considered predict the same reaction pathways from the fuels to CO, they can be very inconsistent in the selection of the reaction rate coefficients. This variation is especially true for ethane, for which a larger disagreement with the data was generally observed.


2022 ◽  
Author(s):  
Hendrik Burghaus ◽  
Clemens F. Kaiser ◽  
Adam S. Pagan ◽  
Stefanos Fasoulas ◽  
Georg Herdrich

2022 ◽  
Author(s):  
Morgan Ruesch ◽  
Jonathan J. Gilvey ◽  
Kyle Daniel ◽  
Kyle P. Lynch ◽  
Justin L. Wagner ◽  
...  

2022 ◽  
Author(s):  
Bayu A. Dharmaputra ◽  
Yuan Xiong ◽  
Sergey Shcherbanev ◽  
Audrey Blondé ◽  
Nicolas Noiray

Sign in / Sign up

Export Citation Format

Share Document