Integration of 2D Black Phosphorus Phototransistor and Silicon Photonics Waveguide System Towards Mid-Infrared On-Chip Sensing Applications

Author(s):  
Li Huang ◽  
Bowei Dong ◽  
Xin Guo ◽  
Yuhua Chang ◽  
Nan Chen ◽  
...  
Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4061
Author(s):  
Henry Frankis ◽  
Daniel Su ◽  
Dawson Bonneville ◽  
Jonathan Bradley

We report on thermal and evanescent field sensing from a tellurium oxide optical microcavity resonator on a silicon photonics platform. The on-chip resonator structure is fabricated using silicon-photonics-compatible processing steps and consists of a silicon-on-insulator waveguide next to a circular trench that is coated in a tellurium oxide film. We characterize the device’s sensitivity by both changing the temperature and coating water over the chip and measuring the corresponding shift in the cavity resonance wavelength for different tellurium oxide film thicknesses. We obtain a thermal sensitivity of up to 47 pm/°C and a limit of detection of 2.2 × 10−3 RIU for a device with an evanescent field sensitivity of 10.6 nm/RIU. These results demonstrate a promising approach to integrating tellurium oxide and other novel microcavity materials into silicon microphotonic circuits for new sensing applications.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Euijae Shim ◽  
Andres Gil-Molina ◽  
Ohad Westreich ◽  
Yamac Dikmelik ◽  
Kevin Lascola ◽  
...  

AbstractPortable mid-infrared (mid-IR) spectroscopy and sensing applications require widely tunable, chip-scale, single-mode sources without sacrificing significant output power. However, no such lasers have been demonstrated beyond 3 μm due to the challenge of building tunable, high quality-factor (Q) on-chip cavities. Here we demonstrate a tunable, single-mode mid-IR laser at 3.4 μm using a tunable high-Q silicon microring cavity and a multi-mode Interband Cascade Laser. We achieve single-frequency lasing with 0.4 mW output power via self-injection locking and a wide tuning range of 54 nm with 3 dB output power variation. We further estimate an upper-bound effective linewidth of 9.1 MHz and a side mode suppression ratio of 25 dB from the locked laser using a scanning Fabry-Perot interferometer. Our laser platform based on a tunable high-Q microresonator can be expanded to higher wavelength quantum-cascade lasers and lead to the development of compact, high-performance mid-IR sensors for spectroscopic applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hwa-Seub Lee ◽  
Gyu-Weon Hwang ◽  
Tae-Yeon Seong ◽  
Jongkil Park ◽  
Jae Wook Kim ◽  
...  

AbstractMid-infrared wavelengths are called the molecular fingerprint region because it contains the fundamental vibrational modes inherent to the substances of interest. Since the mid-infrared spectrum can provide non-destructive identification and quantitative analysis of unknown substances, miniaturized mid-infrared spectrometers for on-site diagnosis have attained great concern. Filter-array based on-chip spectrometer has been regarded as a promising alternative. In this study, we explore a way of applying a pillar-type plasmonic nanodiscs array, which is advantageous not only for excellent tunability of resonance wavelength but also for 2-dimensional integration through a single layer process, to the multispectral filter array for the on-chip spectrometer. We theoretically and experimentally investigated the optical properties of multi-periodic triangular lattices of metal nanodiscs array that act as stopband filters in the mid-infrared region. Soft-mold reverse nanoimprint lithography with a subsequent lift-off process was employed to fabricate the multispectral filter array and its filter function was successfully extracted using a Fourier transform infrared microscope. With the measured filter function, we tested the feasibility of target spectrum reconstruction using a Tikhonov regularization method for an ill-posed linear problem and evaluated its applicability to the infrared spectroscopic sensor that monitors an oil condition. These results not only verify that the multispectral filter array composed of stopband filters based on the metal nanodiscs array when combined with the spectrum reconstruction technique, has great potential for use to a miniaturized mid-infrared on-chip spectrometer, but also provide effective guidance for the filter design.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Rostamian ◽  
Ehsan Madadi-Kandjani ◽  
Hamed Dalir ◽  
Volker J. Sorger ◽  
Ray T. Chen

Abstract Thanks to the unique molecular fingerprints in the mid-infrared spectral region, absorption spectroscopy in this regime has attracted widespread attention in recent years. Contrary to commercially available infrared spectrometers, which are limited by being bulky and cost-intensive, laboratory-on-chip infrared spectrometers can offer sensor advancements including raw sensing performance in addition to use such as enhanced portability. Several platforms have been proposed in the past for on-chip ethanol detection. However, selective sensing with high sensitivity at room temperature has remained a challenge. Here, we experimentally demonstrate an on-chip ethyl alcohol sensor based on a holey photonic crystal waveguide on silicon on insulator-based photonics sensing platform offering an enhanced photoabsorption thus improving sensitivity. This is achieved by designing and engineering an optical slow-light mode with a high group-index of n g  = 73 and a strong localization of modal power in analyte, enabled by the photonic crystal waveguide structure. This approach includes a codesign paradigm that uniquely features an increased effective path length traversed by the guided wave through the to-be-sensed gas analyte. This PIC-based lab-on-chip sensor is exemplary, spectrally designed to operate at the center wavelength of 3.4 μm to match the peak absorbance for ethanol. However, the slow-light enhancement concept is universal offering to cover a wide design-window and spectral ranges towards sensing a plurality of gas species. Using the holey photonic crystal waveguide, we demonstrate the capability of achieving parts per billion levels of gas detection precision. High sensitivity combined with tailorable spectral range along with a compact form-factor enables a new class of portable photonic sensor platforms when combined with integrated with quantum cascade laser and detectors.


2013 ◽  
Author(s):  
Roel Baets ◽  
Ananth Z. Subramanian ◽  
Ashim Dhakal ◽  
Shankar K. Selvaraja ◽  
Katarzyna Komorowska ◽  
...  
Keyword(s):  

2017 ◽  
Vol 6 (9) ◽  
pp. e17053-e17053 ◽  
Author(s):  
Carlos García-Meca ◽  
Sergio Lechago ◽  
Antoine Brimont ◽  
Amadeu Griol ◽  
Sara Mas ◽  
...  

2D Materials ◽  
2016 ◽  
Vol 3 (4) ◽  
pp. 041006 ◽  
Author(s):  
Ryan J Suess ◽  
Edward Leong ◽  
Joseph L Garrett ◽  
Tong Zhou ◽  
Reza Salem ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document