Differentiation between normal and tumor mammary glands with depth-resolved attenuation coefficient from optical coherence tomography

Author(s):  
Marino de Jesus Maciel ◽  
Hugo M Pereira ◽  
Sara Pimenta ◽  
Alice Miranda ◽  
Eduardo Jorge Nunes-Pereira ◽  
...  

Abstract Optical coherence tomography (OCT) is a well-established imaging technology for high-resolution, cross-sectional imaging of biological tissues. Imaging processing and light attenuation coefficient estimation allows to further improve the OCT diagnostic capability. In this paper we use a commercial OCT system, Telesto II-1325LR from Thorlabs, and demonstrate its ability to differentiate normal and tumor mammary mouse glands with the OCT attenuation coefficient. Using several OCT images of normal and tumor mammary mouse glands (n=26), a statistical analysis was performed. The attenuation coefficient was calculated in depth, considering a slope of 0.5 mm. The normal glands present a median attenuation coefficient of 0.403 mm-1, comparatively to 0.561 mm-1 obtained for tumor mammary glands. This translates in an attenuation coefficient approximately 39 % higher for tumor mammary glands when compared to normal mammary glands. The OCT attenuation coefficient estimation eliminates the subjective analysis provided by direct visualization of the OCT images.

2010 ◽  
Vol 03 (01) ◽  
pp. 17-23 ◽  
Author(s):  
XIAODONG CHEN ◽  
QIAO LI ◽  
YONG LEI ◽  
YI WANG ◽  
DAOYIN YU

Spectral domain optical coherence tomography (SDOCT) is a noninvasive, cross-sectional imaging technique that measures depth resolved reflectance of tissue by Fourier transforming the spectral interferogram with the scanning of the reference avoided. Interferometric synthetic aperture microscopy (ISAM) is an optical microscopy computed-imaging technique for measuring the optical properties of biological tissues, which can overcome the compromise between depth of focus and transverse resolution. This paper describes the principle of SDOCT and ISAM, which multiplexes raw acquisitions to provide quantitatively meaningful data with reliable spatially invariant resolution at all depths. A mathematical model for a coherent microscope with a planar scanning geometry and spectral detection was described. The two-dimensional fast Fourier transform (FFT) of spectral data in the transverse directions was calculated. Then the nonuniform ISAM resampling and filtering was implemented to yield the scattering potential within the scalar model. Inverse FFT was used to obtain the ISAM reconstruction. One scatterer, multiple scatterers, and noisy simulations were implemented by use of ISAM to catch spatially invariant resolution. ISAM images were compared to those obtained using standard optical coherence tomography (OCT) methods. The high quality of the results validates the rationality of the founded model and that diffraction limited resolution can be achieved outside the focal plane.


2020 ◽  
Vol 08 (05) ◽  
pp. E644-E649
Author(s):  
Amy Tyberg ◽  
Isaac Raijman ◽  
Aleksey A. Novikov ◽  
Divyesh V. Sejpal ◽  
Petros C. Benias ◽  
...  

Abstract Background and study aims First-generation optical coherence tomography (OCT) has been shown to increase diagnostic sensitivity for malignant biliary and pancreatic-duct strictures. A newer OCT imaging system, NVision Volumetric Laser Endomicroscopy (VLE), allows for in vivo cross-sectional imaging of the ductal wall at the microstructure level during endoscopic retrograde cholangiopancreatography (ERCP). The aim of this study was to identify and evaluate characteristics on OCT that are predictive of benign and malignant strictures. Patients and methods Consecutive patients from six centers who underwent OCT between September 2016 and September 2017 were included in a dedicated registry. OCT images were analyzed, and nine recurring characteristics were further assessed. Final diagnosis was based on histology and/or surgical pathology. Results 86 patients were included (49 % male, mean age 64.7). OCT was performed in the bile duct in 79 patients and the pancreatic duct in seven. Nine OCT characteristics were identified: dilated hypo-reflective structures (n = 7), onion-skin layering (n = 8), intact layering (n = 17), layering effacement (n = 25), scalloping (n = 20), thickened epithelium (n = 42), hyper-glandular mucosa (n = 13), prominent blood vessels (n = 6), and a hyper-reflective surface (n = 20). Presence of hyper-glandular mucosa, hyper-reflective surface and scalloping significantly increased the odds of malignancy diagnosis by 6 times more (P = 0.0203; 95 % CI 1.3 to 26.5), 4.7 times more (P = 0.0255; 95 % CI 1.2 to 18.0) and 7.9 times more (P = 0.0035; 95 % CI 1.97 to 31.8) respectively. Conclusion By providing in-vivo cross-sectional imaging of the pancreatic and biliary duct wall, OCT technology may improve sensitivity in diagnosing malignant strictures and provide standardizable criteria predictive of malignancy.


2013 ◽  
Vol 7 (7) ◽  
pp. 506-513 ◽  
Author(s):  
Yasushi Shimada ◽  
Hisaichi Nakagawa ◽  
Alireza Sadr ◽  
Ikumi Wada ◽  
Masatoshi Nakajima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document