Where did all the calculus go?

Physics World ◽  
2021 ◽  
Vol 34 (9) ◽  
pp. 17-17
Author(s):  
Niki Bell
Keyword(s):  

Niki Bell argues that mathematics A-level could be reformed so that it does more to support physics students.

Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 86
Author(s):  
Caterina Foti ◽  
Daria Anttila ◽  
Sabrina Maniscalco ◽  
Maria Luisa Chiofalo

Educating K12 students and general public in quantum physics represents an evitable must no longer since quantum technologies are going to revolutionize our lives. Quantum literacy is a formidable challenge and an extraordinary opportunity for a massive cultural uplift, where citizens learn how to engender creativity and practice a new way of thinking, essential for smart community building. Scientific thinking hinges on analyzing facts and creating understanding, and it is then formulated with the dense mathematical language for later fact checking. Within classical physics, learners’ intuition may in principle be educated via classroom demonstrations of everyday-life phenomena. Their understanding can even be framed with the mathematics suited to their instruction degree. For quantum physics, on the contrary, we have no experience of quantum phenomena and the required mathematics is beyond non-expert reach. Therefore, educating intuition needs imagination. Without rooting to experiments and some degree of formal framing, educators face the risk to provide only evanescent tales, often misled, while resorting to familiar analogies. Here, we report on the realization of QPlayLearn, an online platform conceived to explicitly address challenges and opportunities of massive quantum literacy. QPlayLearn’s mission is to provide multilevel education on quantum science and technologies to anyone, regardless of age and background. To this aim, innovative interactive tools enhance the learning process effectiveness, fun, and accessibility, while remaining grounded on scientific correctness. Examples are games for basic quantum physics teaching, on-purpose designed animations, and easy-to-understand explanations on terminology and concepts by global experts. As a strategy for massive cultural change, QPlayLearn offers diversified content for different target groups, from primary school all the way to university physics students. It is addressed also to companies wishing to understand the potential of the emergent quantum industry, journalists, and policymakers needing to seize what quantum technologies are about, as well as all quantum science enthusiasts.


2015 ◽  
Vol 93 (1) ◽  
pp. 1-2
Author(s):  
Alan J. Slavin

Over the last few years, video assistive apparatus has become available at an accessible price that will allow students who have limited vision to participate almost fully in many laboratory courses at university. This paper presents a survey of the number of legally blind university physics students in Canada for the period 2003 to 2013. It will act as a benchmark to measure the effectiveness, in laboratory courses, of recent legislation mandating the provision of assistive devices in educational institutions. The survey was sent to all 52 physics departments at institutions in Canada that grant physics degrees, with all but one of the departments replying. None knew of any legally blind physicists practising in Canada. The only legally blind physics students reported were one partially sighted student who was awarded a Ph.D. in 2001, and one currently at Trent University. The survey results show that of the 12.5% of blind students who hold university degrees in Canada, very few of them are in physics.


2020 ◽  
Vol 1674 ◽  
pp. 012017
Author(s):  
J E Jaramillo ◽  
J F Rincón Leal ◽  
O L Rincón Leal

Author(s):  
Lorena Solvang ◽  
Jesper Haglund

AbstractThe present study contributes to the understanding of physics students’ representational competence by examining specific bodily practices (e.g. gestures, enactment) of students’ interaction and constructions of representations in relation to a digital learning environment. We present and analyse video data of upper-secondary school students’ interaction with a GeoGebra simulation of friction. Our analysis is based on the assumption that, in a collaborative learning environment, students use their bodies as means of dealing with interpretational problems, and that exploring students’ gestures and enactment can be used to analyse their sensemaking processes. This study shows that specific features of the simulation—features connected with microscopic aspects of friction—triggered students to ask what-if and why questions and consequently, to learn about the representation. During this sense-making process, students improvised their own representations to make their ideas more explicit. The findings extend current research on students’ representational competence by bringing attention to the role of students’ generation of improvised representations in the processes of learning with and about representations.


2022 ◽  
Vol 11 (1) ◽  
pp. 83-101
Author(s):  
Agnes Mbonyiryivuze

We investigate students’ misconceptions in electrostatics, direct current (DC) and magnetism which are important in electricity and magnetism. We developed and administered a multiple-choice questionnaire test to reveal students’ misconceptions related to charged bodies, lightning, electric fields, electric potential, forces, DC resistive electric circuits and magnets. This test aimed at obtaining quantitative information about misconceptions and was administered to 380 senior two students from Nine Year Basic Education (9YBE) Schools. The selected students have some experience with the new Rwandan secondary physics Competence Based Curriculum (CBC) that is currently under implementation. We find that senior two students have several common misconceptions related to these concepts. The data indicate that although students have some backgrounds on the subject matter, they still seem to believe that if the two charges are separated by a distance, a large-charged object exerts a greater force of attraction or repulsion on the small one. Considerable number of participated students held the misconception of considering current consumption in the resistor/bulb or the electrical devices in the circuits. They also believed that the battery was a continuous current source. The findings also revealed that students held a misconception that a bar magnet when broken into pieces, it is demagnetized. Moreover, a considerable number of participants hold the misconception that all metals are attracted by a magnet. Our study also revealed some of the statistically significant differences in terms of either gender or location of schools for some items.


Sign in / Sign up

Export Citation Format

Share Document