scholarly journals The Interplay between (Electro)chemical and (Chemo)mechanical Effects in the Cycling Performance of Thiophosphate-based Solid-State Batteries

2021 ◽  
Author(s):  
Jun Hao Teo ◽  
Florian Strauss ◽  
Felix Walther ◽  
Yuan Ma ◽  
Seyedhosein Payandeh ◽  
...  
2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A-Young Kim ◽  
Florian Strauss ◽  
Timo Bartsch ◽  
Jun Hao Teo ◽  
Jürgen Janek ◽  
...  

AbstractWhile still premature as an energy storage technology, bulk solid-state batteries are attracting much attention in the academic and industrial communities lately. In particular, layered lithium metal oxides and lithium thiophosphates hold promise as cathode materials and superionic solid electrolytes, respectively. However, interfacial side reactions between the individual components during battery operation usually result in accelerated performance degradation. Hence, effective surface coatings are required to mitigate or ideally prevent detrimental reactions from occurring and having an impact on the cyclability. In the present work, we examine how surface carbonates incorporated into the sol–gel-derived LiNbO3 protective coating on NCM622 [Li1+x(Ni0.6Co0.2Mn0.2)1–xO2] cathode material affect the efficiency and rate capability of pellet-stack solid-state battery cells with β-Li3PS4 or argyrodite Li6PS5Cl solid electrolyte and a Li4Ti5O12 anode. Our research data indicate that a hybrid coating may in fact be beneficial to the kinetics and the cycling performance strongly depends on the solid electrolyte used.


2008 ◽  
Vol 01 (01) ◽  
pp. 31-36 ◽  
Author(s):  
MASAHIRO TATSUMISAGO ◽  
AKITOSHI HAYASHI

Highly conductive glass-ceramic electrolytes are successfully prepared in the system Li 2 S - P 2 S 5 with 70 and 80 mol% Li 2 S . The conductivities of these electrolytes are respectively 3.2 × 10-3 and 1.0 × 10-3 S cm -1 at room temperature. The precipitated crystals upon heat treatment of the glass are new superionic phase Li 7 P 3 S 11 and thio-LISICON II analog Li 3+5x P 1-x S 4, respectively. The crystal structure of the new phase Li 7 P 3 S 11 is analyzed and found to have a triclinic unit cell with space group of P-1 and to contain [Formula: see text] and [Formula: see text] ions. All-solid-state batteries using the Li 2 S - P 2 S 5 glass-ceramics are fabricated in order to evaluate the cell performance as a lithium secondary battery. The cells In /80 Li 2 S ·20 P 2 S 5 (mol%) glass-ceramic/ LiCoO 2 exhibit excellent cycling performance of over 500 times with no decrease in the discharge capacity (100 mAh g-1) at limited current densities. They also worked under very high current densities of 10 mA cm-2 when oxide- or sulfide-coated LiCoO 2 particles were used as an active material.


2012 ◽  
Vol 51 (8R) ◽  
pp. 085803
Author(s):  
Seung Hyun Jee ◽  
Seok Hee Lee ◽  
Dong-Joo Kim ◽  
Ji-Yeon Kwak ◽  
Sang-Cheol Nam ◽  
...  

2020 ◽  
Vol 12 (51) ◽  
pp. 57146-57154
Author(s):  
Florian Strauss ◽  
Jun Hao Teo ◽  
Julia Maibach ◽  
A-Young Kim ◽  
Andrey Mazilkin ◽  
...  

2012 ◽  
Vol 51 ◽  
pp. 085803 ◽  
Author(s):  
Seung Hyun Jee ◽  
Seok Hee Lee ◽  
Dong-Joo Kim ◽  
Ji-Yeon Kwak ◽  
Sang-Cheol Nam ◽  
...  

2021 ◽  
pp. 3020-3028
Author(s):  
Yuan Ma ◽  
Jun Hao Teo ◽  
David Kitsche ◽  
Thomas Diemant ◽  
Florian Strauss ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document