Impact of Cathode Material Particle Size and Applied Pressure on the Cycling Performance of All-Solid-State Batteries

2018 ◽  
Vol 3 (4) ◽  
pp. 992-996 ◽  
Author(s):  
Florian Strauss ◽  
Timo Bartsch ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jürgen Janek ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 1114-1119 ◽  
Author(s):  
Florian Strauss ◽  
Dominik Stepien ◽  
Julia Maibach ◽  
Lukas Pfaffmann ◽  
Sylvio Indris ◽  
...  

Low-surface-area carbon black helps to improve the performance of bulk-type all-solid-state batteries using NCM622 cathode material and argyrodite Li6PS5Cl solid electrolyte.


2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2019 ◽  
Vol 31 (23) ◽  
pp. 9664-9672 ◽  
Author(s):  
A-Young Kim ◽  
Florian Strauss ◽  
Timo Bartsch ◽  
Jun Hao Teo ◽  
Toru Hatsukade ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Gerald Dück ◽  
Sahir Naqash ◽  
Martin Finsterbusch ◽  
Uwe Breuer ◽  
Olivier Guillon ◽  
...  

Sodium is a promising candidate for stationary storage applications, especially when the demand for lithium-ion batteries increases due to electromobility applications. Even though its energy density is lower, Na-ion technology is estimated to lead to a cost reduction of 30% compared to Li-ion technology. To improve safety as well as energy density, Na-based all-solid-state-batteries featuring solid electrolytes such as beta-alumina and sodium superionic conductors and cathode materials such as Na3V2(PO4)3 and NaxCoO2 have been developed over the past years. However, the biggest challenge are mixed cathodes with highly conductive interfaces, especially when co-sintering the materials. For example, a promising sodium superionic conductor type Na3Zr2Si2PO12 electrolyte sinters at 1,250°C, whereas the corresponding Na3V2PO12 cathode decomposes at temperatures higher than 900°C, posing a bottleneck. Thus in this paper, we synthesized Na0.62 [Ni0.10Fe0.10Mn0.80]O2 as cathode material for all-solid-state sodium-ion batteries via a relatively cheap and easy solution-assisted solid state reaction processing route. The thermal investigations of the pure cathode material found no degradation up to 1,260°C, making it a perfect match for Na3.4Zr2Si2.4P0.6O12 electrolyte. In our aim to produce a co-sintered mixed cathode, electron microscopy investigation showed a highly dense microstructure and the elemental mapping performed via energy dispersive X-ray spectroscopy and secondary ion mass spectrometry confirm that Na3.4Zr2Si2.4P0.6O12 and Na0.62 [Ni0.10Fe0.10Mn0.80]O2 do not react during sintering. However, the active cathode material forms a sodium rich and a sodium deficient phase which needs further investigation to understand the origin and its impact on the electrochemical performance.


2012 ◽  
Vol 51 (8R) ◽  
pp. 085803
Author(s):  
Seung Hyun Jee ◽  
Seok Hee Lee ◽  
Dong-Joo Kim ◽  
Ji-Yeon Kwak ◽  
Sang-Cheol Nam ◽  
...  

2019 ◽  
Vol 7 (36) ◽  
pp. 20861-20870 ◽  
Author(s):  
Hao Shen ◽  
Eongyu Yi ◽  
Marco Amores ◽  
Lei Cheng ◽  
Nobumichi Tamura ◽  
...  

A novel freeze casting technique was employed to obtain 3D porous LLZO solid-electrolyte scaffolds that were infiltrated with NMC-622 cathode material to form thick composite electrodes for all-solid-state batteries.


Sign in / Sign up

Export Citation Format

Share Document