Calculation of Gluon Distribution Functions in Leading Order by Regge-like Behavior at Low- x

2005 ◽  
Vol 44 (5) ◽  
pp. 891-896 ◽  
Author(s):  
G.R Boroun
2009 ◽  
Vol 18 (01) ◽  
pp. 131-140 ◽  
Author(s):  
G. R. BOROUN

We present an analytic formula to extract the longitudinal structure function in the next-to-leading order of the perturbation theory at low x, from the Regge-like behavior of the gluon distribution and the structure function at this limit. In this approach, the longitudinal structure function has the hard-Pomeron behavior. The determined values are compared with the H1 data and MRST model. All results can consistently be described within the framework of perturbative QCD, which essentially show increases as x decreases.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Ranjit Choudhury ◽  
D. K. Choudhury

The coupled Altarelli-Parisi (AP) equations for polarized singlet quark distribution and polarized gluon distribution, when considered in the small x limit of the next to leading order (NLO) splitting functions, reduce to a system of two first order linear nonhomogeneous integrodifferential equations. We have applied the method of successive approximations to obtain the solutions of these equations. We have applied the same method to obtain the approximate analytic expressions for spin-dependent quark distribution functions with individual flavour and polarized structure functions for nucleon.


2012 ◽  
Vol 27 (31) ◽  
pp. 1250179 ◽  
Author(s):  
H. NEMATOLLAHI ◽  
M. M. YAZDANPANAH ◽  
A. MIRJALILI

We compute the longitudinal structure function of the proton (FL) at the next-to-next-to-leading order (NNLO) approximation. For this purpose, we should know the flavor-singlet, non-singlet and gluon distribution functions of the proton. We use the chiral quark model (χQM) to determine these distributions. Finally, we compare the results of FL with the recent ZEUZ and H1 experimental data and some fitting parametrizations. Our results are in good agreement with the data and the related fittings.


Sign in / Sign up

Export Citation Format

Share Document