Carbon Dioxide Accumulation during Small Animal, Whole Body Plethysmography: Effects on Ventilation, Indices of Airway Function, and Aerosol Deposition

2002 ◽  
Vol 15 (1) ◽  
pp. 37-49 ◽  
Author(s):  
Edgar C. Kimmel ◽  
Gregory S. Whitehead ◽  
James E. Reboulet ◽  
Robert L. Carpenter
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Swen Hülsmann ◽  
Amara Khan ◽  
Liya Hagos ◽  
Martin Hindermann ◽  
Torsten Nägel ◽  
...  

AbstractWhole-body plethysmography (WBP) is an established method to determine physiological parameters and pathophysiological alteration of breathing in animals and animal models of a variety of diseases. Although frequently used, there is ongoing debate about what exactly is measured by whole-body-plethysmography and how reliable the data derived from this method are. Here, we designed an artificial lung model that enables a thorough evaluation of different predictions about and around whole-body plethysmography. Using our lung model, we confirmed that during WBP two components contribute to the pressure changes detected in the chamber: (1) the increase in the pressure due to heating and moistening of the air during inspiration, termed conditioning; (2) changes in the chamber pressure that depend on airway resistance. Both components overlap and contribute to the temporal pressure-profile measured in the chamber or across the wall of the chamber, respectively. Our data showed that a precise measurement of the breathing volume appears to be hindered by at least two factors: (1) the unknown relative contribution of each of these two components; (2) not only the air in the inspired volume is conditioned during inspiration, but also air within the residual volume and dead space that is recruited during inspiration. Moreover, our data suggest that the expiratory negative pressure peak that is used to determine the enhanced pause (Penh) parameter is not a measure for airway resistance as such but rather a consequence of the animal’s response to the airway resistance, using forced or active expiration to overcome the resistance by a higher thoracic pressure.


2005 ◽  
pp. 15-43 ◽  
Author(s):  
M.D. Goldman ◽  
H.J. Smith ◽  
W.T. Ulmer

BIO-PROTOCOL ◽  
2020 ◽  
Vol 10 (17) ◽  
Author(s):  
Patricia Prada-Dacasa ◽  
Andrea Urpi ◽  
Laura Sánchez-Benito ◽  
Patrizia Bianchi ◽  
Albert Quintana

2001 ◽  
Vol 281 (5) ◽  
pp. R1746-R1753 ◽  
Author(s):  
Sylvain Renolleau ◽  
Stéphane Dauger ◽  
Fanny Autret ◽  
Guy Vardon ◽  
Claude Gaultier ◽  
...  

Breathing during the first postnatal hours has not been examined in mice, the preferred mammalian species for genetic studies. We used whole body plethysmography to measure ventilation (V˙e), breath duration (TTOT), and tidal volume (Vt) in mice delivered vaginally (VD) or by cesarean section (CS). In experiment 1, 101 VD and 100 CS pups aged 1, 6, 12, 24, or 48 h were exposed to 8% CO2 or 10% O2for 90 s. In experiment 2, 31 VD pups aged 1, 12, or 24 h were exposed to 10% O2 for 5 min. Baseline breathing maturation was delayed in CS pups, but V˙eresponses to hypercapnia and hypoxia were not significantly different between VD and CS pups [at postnatal age of 1 h (H1): 48 ± 44 and 18 ± 32%, respectively, in VD and CS pups combined]. TheV˙e increase induced by hypoxia was greater at H12 (46 ± 27%) because of TTOT response maturation. At all ages, hypoxic decline was ascribable mainly to a Vtdecrease, and posthypoxic decline was ascribable to a TTOTincrease with apneas, suggesting different underlying neuronal mechanisms.


1996 ◽  
Vol 9 (8) ◽  
pp. 1701-1706 ◽  
Author(s):  
M.S. de Bruin-Weller ◽  
F.R. Weller ◽  
A. Scholte ◽  
L.H.M. Rijssenbeek ◽  
S. van der Baan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document