Enhanced In Vitro Inhibition of HIV-1 Replication by 3′-Fluoro-3′-deoxythymidine Compared to Several Other Nucleoside Analogs

1988 ◽  
Vol 4 (6) ◽  
pp. 457-466 ◽  
Author(s):  
HEINZ HARTMANN ◽  
MARKUS W. VOGT ◽  
AMY G. DURNO ◽  
MARTIN S. HIRSCH ◽  
GERHARD HUNSMANN ◽  
...  
2007 ◽  
Vol 52 (1) ◽  
pp. 329-332 ◽  
Author(s):  
Robert A. Smith ◽  
Geoffrey S. Gottlieb ◽  
Donovan J. Anderson ◽  
Crystal L. Pyrak ◽  
Bradley D. Preston

ABSTRACT Using an indicator cell assay that directly quantifies viral replication, we show that human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2, respectively) exhibit similar sensitivities to 3′-azido-3′-deoxythymidine (zidovudine) as well as other nucleoside analog inhibitors of reverse transcriptase. These data support the use of nucleoside analogs for antiviral therapy of HIV-2 infection.


1997 ◽  
Vol 41 (4) ◽  
pp. 831-837 ◽  
Author(s):  
R W Buckheit ◽  
M J Snow ◽  
V Fliakas-Boltz ◽  
T L Kinjerski ◽  
J D Russell ◽  
...  

The structure-activity relationships of a series of compounds related to the nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI) oxathiin carboxanilide have been described (R. W. Buckheit, Jr., T. L. Kinjerski, V. Fliakas-Boltz, J. D. Russell, T. L. Stup, L. A. Pallansch, W. G. Brouwer, D. C. Dao, W. A. Harrison, R. J. Schultz, J. P. Bader, and S. S. Yang, Antimicrob. Agents Chemother. 39:2718-2727, 1996). From these studies, the furanyl-containing analog UC10 was identified as the most potent inhibitor of human immunodeficiency virus type 1 (HIV-1) replication and a promising candidate for further development. Three new UC analogs (UC040, UC82, and UC781) have been determined to inhibit laboratory-derived and low-passage-number, primary virus isolates at low nanomolar concentrations in both established and fresh human cells. Each of the compounds synergistically interacted with the nucleoside analogs zidovudine, dideoxyinosine, dideoxycytosine, and lamivudine to inhibit HIV-1 replication. As a group, the UC compounds were found to be less active against viruses with the L100I, K103N, and Y181C amino acid changes in the RT and, upon in vitro selection, yielded resistant virus with the Y181C mutation in the RT. The most potent of the three new compounds, UC781, contains a furanyl side chain, similar to UC10, but differs in having an extended ether side chain instead of an oxime chain. The broad therapeutic index of UC781 (>62,000) resulted in effective inhibition of NNRTI-resistant virus isolates at high nanomolar concentrations. Furthermore, UC781 and the NNRTI costatolide were able to synergistically inhibit HIV-1 replication when used in combination, suggesting that UC781 may interact with the RT differently than the other UC analogs. The favorable anti-HIV properties of the UC compounds suggest they should be considered for further clinical development.


2011 ◽  
Vol 55 (5) ◽  
pp. 2379-2389 ◽  
Author(s):  
B. Christie Vu ◽  
Paul L. Boyer ◽  
Maqbool A. Siddiqui ◽  
Victor E. Marquez ◽  
Stephen H. Hughes

ABSTRACTIt is important to develop new anti-HIV drugs that are effective against the existing drug-resistant mutants. Because the excision mechanism is an important pathway for resistance to nucleoside analogs, we are preparing analogs that retain a 3′-OH and can be extended after they are incorporated by the viral reverse transcriptase. We show that 4′-C-alkyl-deoxyadenosine (4′-C-alkyl-dA) compounds can be phosphorylated in cultured cells and can inhibit the replication of HIV-1 vectors: 4′-C-methyl- and 4′-C-ethyl-dA show both efficacy and selectivity against HIV-1. The compounds are also effective against viruses that replicate using reverse transcriptases (RTs) that carry nucleoside reverse transcriptase inhibitor resistance mutations, with the exception of the M184V mutant. Analysis of viral DNA synthesis in infected cells showed that viral DNA synthesis is blocked by the incorporation of either 4′-C-methyl- or 4′-C-ethyl-2′-deoxyadenosine.In vitroexperiments with purified HIV-1 RT showed that 4′-C-methyl-2′-dATP can compete with dATP and that incorporation of the analog causes pausing in DNA synthesis. The 4′-C-ethyl compound also competes with dATP and shows a differential ability to block DNA synthesis on RNA and DNA templates. Experiments that measure the ability of the compounds to block DNA synthesis in infected cells suggest that this differential block to DNA synthesis also occurs in infected cells.


2017 ◽  
Vol 32 (6) ◽  
pp. 485-494
Author(s):  
Ting Tu ◽  
Jianbo Zhan ◽  
Danlei Mou ◽  
Wei Li ◽  
Bin Su ◽  
...  

2001 ◽  
Vol 45 (5) ◽  
pp. 1539-1546 ◽  
Author(s):  
Ei-Ichi Kodama ◽  
Satoru Kohgo ◽  
Kenji Kitano ◽  
Haruhiko Machida ◽  
Hiroyuki Gatanaga ◽  
...  

ABSTRACT A series of 4′-ethynyl (4′-E) nucleoside analogs were designed, synthesized, and identified as being active against a wide spectrum of human immunodeficiency viruses (HIV), including a variety of laboratory strains of HIV-1, HIV-2, and primary clinical HIV-1 isolates. Among such analogs examined, 4′-E-2′-deoxycytidine (4′-E-dC), 4′-E-2′-deoxyadenosine (4′-E-dA), 4′-E-2′-deoxyribofuranosyl-2,6-diaminopurine, and 4′-E-2′-deoxyguanosine were the most potent and blocked HIV-1 replication with 50% effective concentrations ranging from 0.0003 to 0.01 μM in vitro with favorable cellular toxicity profiles (selectivity indices ranging 458 to 2,600). These 4′-E analogs also suppressed replication of various drug-resistant HIV-1 clones, including HIV-1M41L/T215Y, HIV-1K65R, HIV-1L74V, HIV-1M41L/T69S-S-G/T215Y, and HIV-1A62V/V75I/F77L/F116Y/Q151M. Moreover, these analogs inhibited the replication of multidrug-resistant clinical HIV-1 strains carrying a variety of drug resistance-related amino acid substitutions isolated from HIV-1-infected individuals for whom 10 or 11 different anti-HIV-1 agents had failed. The 4′-E analogs also blocked the replication of a non-nucleoside reverse transcriptase inhibitor-resistant clone, HIV-1Y181C, and showed an HIV-1 inhibition profile similar to that of zidovudine in time-of-drug-addition assays. The antiviral activity of 4′-E-thymidine and 4′-E-dC was blocked by the addition of thymidine and 2′-deoxycytidine, respectively, while that of 4′-E-dA was not affected by 2′-deoxyadenosine, similar to the antiviral activity reversion feature of 2′,3′-dideoxynucleosides, strongly suggesting that 4′-Eanalogs belong to the family of nucleoside reverse transcriptase inhibitors. Further development of 4′-E analogs as potential therapeutics for infection with multidrug-resistant HIV-1 is warranted.


1997 ◽  
Vol 23 (4) ◽  
pp. 571-578 ◽  
Author(s):  
Marvin A. Edeas ◽  
Ingrid Emerit ◽  
Yacine Khalfoun ◽  
Yamina Lazizi ◽  
Lidia Cernjavski ◽  
...  

FEBS Letters ◽  
1990 ◽  
Vol 261 (2) ◽  
pp. 373-377 ◽  
Author(s):  
Karin Moelling ◽  
Thomas Schulze ◽  
Marie-Therés Knoop ◽  
John Kay ◽  
Raymond Jupp ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document