Do the Cytoplast and Nuclear Material of Germinal Vesicle Oocyte Support Developmental Competence Upon Reconstruction with Embryonic/Somatic Nucleus

2019 ◽  
Vol 21 (4) ◽  
pp. 163-170
Author(s):  
Abd El-Nasser Ahmed Mohammed ◽  
Saker Al-Suwaiegh ◽  
Tarek Al-Shaheen
Zygote ◽  
2005 ◽  
Vol 13 (4) ◽  
pp. 303-308 ◽  
Author(s):  
H. Iwata ◽  
T. Hayashi ◽  
H. Sato ◽  
K. Kimura ◽  
T. Kuwayama ◽  
...  

During ovary storage oocytes lose some of their developmental competence. In the present study, we maintained storage solutions of phosphate-buffered saline (PBS) at various temperatures (20 or 35 °C) or supplemented them with magnesium (Mg), raffinose and sucrose. Subsequently, we examined the kinetics of electrolytes in the follicular fluid (FF) during the ovary storage period (9h), the survival rate of granulosa cells in the follicles, and the developmental competence of oocytes after the storage. Lowering the temperature from 35 to 20 °C increased the total cell number of blastocysts that developed at 7 days after in vitro maturation and in vitro fertilization of oocytes. In stock solution with supplements of 15 mM Mg or a combination of 5 mM Mg and 10 mM raffinose or sucrose, a significantly higher number of oocytes developed into blastocysts with a large number of cells in each blastocyst, and a significantly higher number of living granulosa cells were obtained as compared with stock solutions without any supplements. During ovary storage, the concentrations of potassium and chloride in the FF were increased, and the addition of Mg to the stock solution increased the concentration of Mg in the FF. Germinal vesicle breakdown in oocytes that were collected from ovaries stored in the solution supplemented with 15 mM Mg or a combination of 5 mM Mg and 10 mM of raffinose occurred at a slower rate than that in oocytes collected from ovaries stored in PBS alone. On the other hand, the oocytes collected from ovaries stored in the solution supplemented with 15 mM Mg or a combination of 5 mM Mg and 10 mM raffinose reached the metaphase II (MII) stage more rapidly than the oocytes collected from ovaries stored in the PBS alone. In conclusion, the modification of stock solution by the addition of Mg and raffinose improved the developmental competence of oocytes obtained from ovaries preserved for a long period.


Author(s):  
Dulama Richani ◽  
Robert B Gilchrist

Abstract Oocytes are maintained in a state of meiotic arrest following the first meiotic division until ovulation is triggered. Within the antral follicle, meiotic arrest is actively suppressed in a process facilitated by the cyclic nucleotides cGMP and cAMP. If removed from this inhibitory follicular environment and cultured in vitro, mammalian oocytes undergo spontaneous meiotic resumption in the absence of the usual stimulatory follicular stimuli, leading to asynchronicity with oocyte cytoplasmic maturation and lower developmental competence. For more than 50 years, pharmacological agents have been used to attenuate oocyte germinal vesicle (GV) breakdown in vitro. Agents which increase intra-oocyte cAMP or prevent its degradation have been predominantly used, however agents such as kinase and protein synthesis inhibitors have also been trialled. Twenty years of research demonstrates that maintaining GV arrest for a period before in vitro maturation (IVM) improves oocyte developmental competence, and is likely attributed to maintenance of bidirectional communication with cumulus cells leading to improved oocyte metabolic function. However, outcomes are influenced by various factors including the mode of action of the modulators, dose, treatment duration, species, and the degree of hormonal priming of the oocyte donor. Cyclic GMP and/or cAMP modulation in a prematuration step (called pre-IVM) prior to IVM has shown the greatest consistency in improving oocyte developmental competence, whereas kinase and protein synthesis inhibitors have proven less effective at improving IVM outcomes. Such pre-IVM approaches have shown potential to alter current use of artificial reproductive technologies in medical and veterinary practice.


2021 ◽  
pp. 103171
Author(s):  
Francisco Báez ◽  
Ramiro López Darriulat ◽  
Nélida Rodríguez-Osorio ◽  
Carolina Viñoles

2014 ◽  
Vol 26 (1) ◽  
pp. 193
Author(s):  
R. Appeltant ◽  
J. Beek ◽  
D. Maes ◽  
A. Van Soom

When using modern maturation conditions for in vitro maturation, pig oocytes yield ~20% blastocysts only. One problem is that cumulus cells, which are normally connected with the immature oocyte by cellular projections penetrating through the zona pellucida and with the oolemma via gap junctions, are prematurely losing these connections after the cumulus–oocyte complex is removed from the follicle. The oocyte possesses a type 3 phosphodiesterase, which degrades 3′,5′-cyclic adenosine monophosphate (cAMP), and this activity is inhibited by supply of 3′,5′-cyclic guanosine monophosphate (cGMP) to the oocyte via the cumulus cells. Consequently, cAMP levels, which are typically high during early stages of oocyte maturation in vivo, decrease, leading to spontaneous nuclear maturation and oocytes of low developmental competence. Therefore, the maintenance of these cumulus-oocyte connections is important to keep cAMP high and the oocyte under meiotic arrest. One way to prevent this drop in cAMP is using N6, 2′-o-dibutyryladenosine 3′,5′-cyclic monophosphate sodium (dbcAMP) that causes an arrest at germinal vesicle (GV) stage II (Funahashi et al. 1997 Biol. Reprod. 57, 49–53). Another option is collecting the oocytes in a medium containing the phoshodiesterase inhibitor, IBMX. The present study investigated the influence of IBMX on the progression of the GV of the oocyte after collection, just before the start of the maturation procedure. The GV stage was defined according to Sun et al. (2004 Mol. Reprod. Dev. 69, 228–234). In parallel with the findings on dbcAMP, we hypothesised an arrest at GV II by the presence of IBMX during collection. One group of oocytes were collected in HEPES-buffered TALP without IBMX (n = 375) and another group in the same medium containing 0.5 mM IBMX (n = 586). An average incubation time of 140 min was applied in both groups, and 3 replicates were performed. The proportions of oocytes before or at GV II and beyond GV II were compared in both groups using logistic regression analysis. The proportion of oocytes was included as dependent variable and group (IBMX addition or not) as independent variable. Replicate was also included in the model. The proportion of oocytes before or at GV II was not statistically significant between the group without and the group with IBMX (59.2 v. 58.7% respectively; P > 0.05). In conclusion, the use of IBMX during oocyte collection did not influence the state of the germinal vesicle of the oocyte during collection, indicating that IBMX did not cause a meiotic arrest in the oocytes during collecting in vitro.


2020 ◽  
Vol 32 (2) ◽  
pp. 224
Author(s):  
S. Soto-Heras ◽  
A. Lorenzo ◽  
I. Menéndez-Blanco ◽  
D. Izquierdo ◽  
M. Paramio

Oocytes from juvenile goats are collected by slicing the ovary surface because the high percentage of small antral follicles limits follicular aspiration. The time of oocyte collection can impair oocyte developmental competence due to spontaneous resumption of meiosis. The aim of this study was to assess whether the time of slicing period affects oocyte meiosis and embryo development after invitro fertilization. Ovaries from juvenile goats (1-2 months old) were recovered at a local slaughterhouse. Cumulus-oocyte complexes (COCs) were collected by slicing, selected, and kept in the slicing medium at 38.5°C in humidified air with 5% CO2 until analysis or culture. The slicing medium was HEPES-buffered (25mM) TCM-199 with 2.2mgmL−1 NaHCO3 and 50mgmL−1 gentamicin. Two slicing periods were tested: T1 (1 h) and T4 (4 h). After this time, a group of oocytes were stained with 1% orcein in 45% acetic acid solution for assessing meiotic arrest and observed as the rate of germinal vesicle (GV; 61-67 oocytes/group from 5 replicates). The remaining COCs were cultured in our conventional IVM medium (TCM-199 with FSH, LH, oestradiol, sodium pyruvate, glutamine, cysteamine, epidermal growth factor, and fetal bovine serum) at 38.5°C with 5% CO2. After 24h, a sample of oocytes were stained for assessing nuclear maturation (28-29 oocytes/group, 3 replicates), and the rest were invitro fertilized with 4×106 spermmL−1 in BO-IVF medium (IVF Bioscience) for 20h and embryo cultured in BO-IVC medium for 7 days (70-81 oocytes/group, 3 replicates). Blastocysts were stained with Hoechst 33258 for determining the number of cells. Data were analysed with two-way ANOVA with RStudio version 1.2.1335. The time of slicing was set as a fixed factor and the replicate as random variable. Data presented as percentage did not follow a normal distribution and were square root arcsine transformed before analysis. At the end of slicing periods T1 and T4, oocytes at GV were 100% and 84.7±5.0%, respectively (P<0.05). After 24h of IVM, the oocytes at MII were 77.0±7.1% and 88.6±7.3%, respectively, without statistical differences. However, oocytes from T1 produced a higher rate of cleaved oocytes (84.6±0.9%) and expanded blastocysts (11.03±5.2%) than T4 (49.8±7.9%, 0%, respectively; P<0.05). The total blastocyst rate for T1 and T4 was 25.4±5.8% and 9.4±4.9%, respectively (P=0.068). No differences were observed in blastocyst cell number (75.9±4.0 and 67.5±10.9, respectively). In conclusion, oocytes resume meiosis before IVM during a long slicing period, even though the slicing medium is not supplemented with hormones or growth factors. The longer slicing period does not affect nuclear maturation but impairs oocyte competence, observed as lower cleavage and blastocyst development. Further experiments are needed to determine whether the use of meiotic inhibitors in the slicing medium can prevent the negative effect of the long slicing period. This study was funded by the Spanish Ministry of Science, Innovation and Universities (AGL2017-85837-R).


2019 ◽  
Vol 31 (6) ◽  
pp. 1068
Author(s):  
Federica Cavalera ◽  
Milena Simovic ◽  
Mario Zanoni ◽  
Valeria Merico ◽  
Silvia Garagna ◽  
...  

In the ovary, acquisition of oocyte developmental competence depends on a bidirectional exchange between the gamete and its companion cumulus cells (CCs). In this study we investigated the contribution of CCs surrounding oocytes of known developmental competence or incompetence to the acquisition of oocyte developmental competence. To this end, feeder layers of CCs (FL-CCs) were prepared using CCs isolated either from: (1) developmentally competent mouse oocytes whose nucleolus was surrounded by a chromatin ring (FL-SN-CCs); or (2) developmentally incompetent mouse oocytes whose nucleolus was not surrounded by a chromatin ring (FL-NSN-CCs). Denuded, fully grown oocytes (DOs) were matured to the MII stage on either FL-SN-CCs or FL-NSN-CCs, inseminated with spermatozoa and cultured throughout preimplantation development. FL-SN-CCs significantly improved the acquisition of oocyte developmental competence, with a blastocyst development rate equal to that for maturation of intact cumulus–oocyte–complexes. In contrast, DOs matured on FL-NSN-CCs or in the absence of CCs exhibited developmental failure, with embryos arresting at either the 4-cell or morula stage. These results set a culture platform to further improve the protocols for the maturation of DOs and to unravel the molecules involved in the cross-talk between the gamete and its companion CCs during the germinal vesicle to MII transition.


2019 ◽  
Vol 31 (12) ◽  
pp. 1793 ◽  
Author(s):  
Valentina Lodde ◽  
Silvia Colleoni ◽  
Irene Tessaro ◽  
Davide Corbani ◽  
Giovanna Lazzari ◽  
...  

Several studies report that a two-step culture where mammalian oocytes are first kept under meiosis-arresting conditions (prematuration) followed by IVM is beneficial to embryo development. The most promising results were obtained by stratifying the oocyte population using morphological criteria and allocating them to different culture conditions to best meet their metabolic needs. In this study, horse oocytes were characterised to identify subpopulations that may benefit from prematuration. We investigated gap-junction (GJ) coupling, large-scale chromatin configuration and meiotic competence in compact and expanded cumulus–oocyte complexes (COCs) according to follicle size (<1, 1–2, >2cm) and season. Then we tested the effect of cilostamide-based prematuration in compact COCs collected from follicles <1 and 1–2cm in diameter on embryo development. Meiotic competence was not affected by prematuration, whereas COCs from follicles 1–2cm in diameter yielded embryos with a higher number of cells per blastocyst than oocytes that underwent direct IVM (P<0.01, unpaired Mann–Whitney test), suggesting improved developmental competence. Oocytes collected from follicles <1cm in diameter were not affected by prematuration. This study represents an extensive characterisation of the functional properties of immature horse oocytes and is the first report of the effects of cilostamide-based prematuration in horse oocyte IVM on embryo development.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhenwei Jia ◽  
Xueli Wang

Abstract The present study aimed to evaluate the effects of C-type natriuretic peptide (CNP) on meiotic arrest and developmental competence of bovine oocyte derived from follicles of different sizes. Collected immature cumulus-oocyte complexes from small follicles (< 3 mm) and medium follicles (3–8 mm) were cultured for 6 h in basal medium supplementated without or with 200 nM CNP. We observed that CNP effectively sustained meiotic arrest at germinal vesicle stage in in vitro cultured bovine oocytes from follicles of different sizes. Moreover, CNP treatment significantly improved the levels of cGMP in both cumulus cells and oocytes, as well as the levels of cAMP in oocytes regardless of follicle size. Based on the above results, we tested the effect of a novel in vitro maturation (IVM) system based on CNP-pretreatment, including a pre-IVM phase for 6 h using 200 nM CNP, followed by a extended IVM phase for 28 h, on developmental competence of bovine oocyte derived from small follicles (< 3 mm) and medium follicles (3–8 mm) compared to standard IVM system. The results showed that athough the novel IVM system based on CNP-pretreatment enhanced the developmental potencial of oocytes obtained from large follicles, but had no effect on the developmental comptence of oocytes obtained from small follicles.


Sign in / Sign up

Export Citation Format

Share Document