somatic nucleus
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 8)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 9 (9) ◽  
pp. 1979
Author(s):  
Valerio Vitali ◽  
Rebecca Rothering ◽  
Francesco Catania

Amitosis is a widespread form of unbalanced nuclear division whose biomedical and evolutionary significance remain unclear. Traditionally, insights into the genetics of amitosis have been gleaned by assessing the rate of phenotypic assortment. Though powerful, this experimental approach relies on the availability of phenotypic markers. Leveraging Paramecium tetraurelia, a unicellular eukaryote with nuclear dualism and a highly polyploid somatic nucleus, we probe the limits of single-cell whole-genome sequencing to study the consequences of amitosis. To this end, we first evaluate the suitability of single-cell sequencing to study the AT-rich genome of P. tetraurelia, focusing on common sources of genome representation bias. We then asked: can alternative rearrangements of a given locus eventually assort after a number of amitotic divisions? To address this question, we track somatic assortment of developmentally acquired Internal Eliminated Sequences (IESs) up to 50 amitotic divisions post self-fertilization. To further strengthen our observations, we contrast empirical estimates of IES retention levels with in silico predictions obtained through mathematical modeling. In agreement with theoretical expectations, our empirical findings are consistent with a mild increase in variation of IES retention levels across successive amitotic divisions of the macronucleus. The modest levels of somatic assortment in P. tetraurelia suggest that IESs retention levels are largely sculpted at the time of macronuclear development, and remain fairly stable during vegetative growth. In forgoing the requirement for phenotypic assortment, our approach can be applied to a wide variety of amitotic species and could facilitate the identification of environmental and genetic factors affecting amitosis.


2021 ◽  
Author(s):  
Valerio Vitali ◽  
Rebecca Rothering ◽  
Francesco Catania

Amitosis is a widespread form of unbalanced nuclear division whose biomedical and evolutionary significance remain unclear. Traditionally, insights into the genetics of amitosis are acquired by assessing the rate of phenotypic assortment. The phenotypic diversification of heterozygous clones during successive cell divisions reveals the random segregation of alleles to daughter nuclei. Though powerful, this experimental approach relies on the availability of phenotypic markers. Here, we present an approach that overcomes the requirement for phenotypic assortment. Leveraging Paramecium tetraurelia, a unicellular eukaryote with nuclear dimorphism and a highly polyploid somatic nucleus, we use single-cell whole-genome sequencing to track the assortment of developmentally acquired somatic DNA variants. Accounting for genome representation biases, we measure the effect of amitosis on allele segregation across the first ~50 amitotic divisions post self-fertilization and compare our empirical findings with theoretical predictions estimated via mathematical modeling. In line with our simulations, we show that amitosis in P. tetraurelia produces measurable but modest levels of somatic assortment. In forgoing the requirement for phenotypic assortment and employing developmental, environmentally induced somatic variation as molecular markers, our work provides a new powerful approach to investigate the consequences of amitosis in polyploid cells.


2019 ◽  
Author(s):  
RV Sampaio ◽  
JR Sangalli ◽  
THC De Bem ◽  
DR Ambrizi ◽  
M del Collado ◽  
...  

AbstractOrchestrated events, including extensive changes in epigenetic marks, allow a somatic nucleus to become totipotent after transfer into an oocyte, a process termed nuclear reprogramming. Recently, several strategies have been applied in order to improve reprogramming efficiency, mainly focused on removing repressive epigenetic marks such as histone methylation from the somatic nucleus. Herein we used the specific and non-toxic chemical probe UNC0638 to inhibit the catalytic activity of the histone metyltransferases EHMT1 and EHMT2. Either the donor cell (before reconstruction) or the early embryo was exposed to the probe to assess its effect on developmental rates and epigenetic marks. First, we showed that the treatment of bovine fibroblasts with UNC0638 did mitigate the levels of H3K9me2. Moreover, H3K9me2 levels were decreased in cloned embryos regardless of treating either donor cells or early embryos with UNC0638. Additional epigenetic marks such as H3K9me3, 5mC, and 5hmC were also affected by the UNC0638 treatment. Therefore, the use of UNC0638 did diminish the levels of H3K9me2 and H3K9me3 in SCNT-derived blastocysts, but this was unable to improve their preimplantation development. These results indicate that the specific reduction of H3K9me2 by inhibiting EHMT1/2 causes diverse modifications to the chromatin during early development, suggesting an intense epigenetic crosstalk during nuclear reprogramming.


2019 ◽  
Vol 116 (29) ◽  
pp. 14639-14644 ◽  
Author(s):  
Masatoshi Mutazono ◽  
Tomoko Noto ◽  
Kazufumi Mochizuki

The silencing of repetitive transposable elements (TEs) is ensured by signal amplification of the initial small RNA trigger, which occurs at distinct steps of TE silencing in different eukaryotes. How such a variety of secondary small RNA biogenesis mechanisms has evolved has not been thoroughly elucidated. Ciliated protozoa perform small RNA-directed programmed DNA elimination of thousands of TE-related internal eliminated sequences (IESs) in the newly developed somatic nucleus. In the ciliate Paramecium, secondary small RNAs are produced after the excision of IESs. In this study, we show that in another ciliate, Tetrahymena, secondary small RNAs accumulate at least a few hours before their derived IESs are excised. We also demonstrate that DNA excision is dispensable for their biogenesis in this ciliate. Therefore, unlike in Paramecium, small RNA amplification occurs before IES excision in Tetrahymena. This study reveals the remarkable diversity of secondary small RNA biogenesis mechanisms, even among ciliates with similar DNA elimination processes, and thus raises the possibility that the evolution of TE-targeting small RNA amplification can be traced by investigating the DNA elimination mechanisms of ciliates.


2019 ◽  
Vol 47 (14) ◽  
pp. 7348-7362 ◽  
Author(s):  
Vita N Jaspan ◽  
Marta E Taye ◽  
Christine M Carle ◽  
Joyce J Chung ◽  
Douglas L Chalker

Abstract During differentiation of the Tetrahymena thermophila somatic nucleus, its germline-derived DNA undergoes extensive reorganization including the removal of ∼50 Mb from thousands of loci called internal eliminated sequences (IESs). IES-associated chromatin is methylated on lysines 9 and 27 of histone H3, marking newly formed heterochromatin for elimination. To ensure that this reorganized genome maintains essential coding and regulatory sequences, the boundaries of IESs must be accurately defined. In this study, we show that the developmentally expressed protein encoded by Lia3-Like 1 (LTL1) (Ttherm_00499370) is necessary to direct the excision boundaries of particular IESs. In ΔLTL1 cells, boundaries of eliminated loci are aberrant and heterogeneous. The IESs regulated by Ltl1 are distinct from those regulated by the guanine-quadruplex binding Lia3 protein. Ltl1 has a general affinity for double stranded DNA (Kd ∼ 350 nM) and binds specifically to a 50 bp A+T rich sequence flanking each side of the D IES (Kd ∼ 43 nM). Together these data reveal that Ltl1 and Lia3 control different subsets of IESs and that their mechanisms for flanking sequence recognition are distinct.


2019 ◽  
Author(s):  
M. Cristina Villafranca ◽  
Melissa R. Makris ◽  
Maria Jesus Garrido Bauerle ◽  
Roderick V. Jensen ◽  
Willard H. Eyestone

ABSTRACTFusion of somatic cells to pluripotent cells such as mouse embryonic stem (ES) cells induces reprogramming of the somatic nucleus, and can be used to study the effect of trans-acting factors from the pluripotent cell on the somatic nucleus. Moreover, fusion of cells from different species permits the identification of the transcriptome of each cell, so the gene expression changes can be monitored. However, fusion only happens in a small proportion of the cells exposed to fusogenic conditions, hence the need for a protocol that produces high fusion rate with minimal cell damage, coupled with a method capable of identifying and selecting fusion events from the bulk of the cells. Polyethylene glycol (PEG) is a polymer of repeated ethylene oxide units known to induce cell fusion within a certain range of molecular weight. Here, we describe a method to induce formation of bi-species heterokaryons from adherent mammalian cells, which can then be specifically labeled and selected using live cell immunostaining and a combination of imaging and traditional flow cytometry. First, we tested several PEG-based fusion conditions to optimize a protocol to consistently produce both mouse NIH/3T3 fibroblast and primary bovine fetal fibroblast (bFF) homokaryons. Initially, we obtained 7.28% of NIH/3T3 homokaryons when using 50% PEG 1500. Addition of 10% of DMSO to the PEG solution increased the percentage of NIH/3T3 homokaryons to 11.71%. In bFFs, treatment with 50% PEG 1500 plus 10% DMSO produced 11.05% of homokaryons. We then produced interspecies heterokaryons by fusing mouse embryonic stem (mES) cells to bFFs. To identify bi-species fusion products, heterokaryons were labeled using indirect immunostaining in live cells and selected using imaging (Amnis ImageStream Mark II) and traditional (BD FACSAria I) flow cytometry. Heterokaryons selected with this method produced ES cell-like colonies when placed back in culture. The method described here can also be combined with downstream applications such as nucleic acid isolation for RT-PCR and RNA-seq, and used as a tool to study cellular processes in which the effect of trans-acting factors is relevant, such as in nuclear reprogramming.


2019 ◽  
Author(s):  
Charlène Rouillon ◽  
Alexandra Depincé ◽  
Nathalie Chênais ◽  
Pierre-Yves Le Bail ◽  
Catherine Labbé

AbstractNuclear transfer consists in injecting a somatic nucleus carrying valuable genetic information into a recipient oocyte to sire a diploid offspring who bears the genome of interest. It requires that the oocyte (maternal) DNA is removed. In fish, because enucleation is difficult to achieve, non-enucleated oocytes are often used and disappearance of the maternal DNA was reported in some clones. The present work explore which cellular events explain spontaneous erasure of maternal DNA, as mastering this phenomenon would circumvent the painstaking procedure of fish oocyte enucleation. The fate of the somatic and maternal DNA during meiosis resumption and first cell cycle was studied using DNA labeling and immunofluorescence in goldfish clones. Maternal DNA was always found as an intact metaphase within the oocyte, and polar body extrusion was minimally affected after meiosis resumption. During the first cell cycle, only 40 % of the clones displayed symmetric cleavage, and these symmetric clones contributed to 80 % of those surviving at hatching. Maternal DNA was often fragmented and located under the cleavage furrow. The somatic DNA was organized either into a normal mitotic spindle or abnormal multinuclear spindle. Scenarios matching the DNA behavior and the embryo fate are proposed.


2018 ◽  
Vol 29 (4) ◽  
pp. 466-478 ◽  
Author(s):  
Rachel Howard-Till ◽  
Josef Loidl

Condensin is a protein complex with diverse functions in chromatin packaging and chromosome condensation and segregation. We studied condensin in the evolutionarily distant protist model Tetrahymena, which features noncanonical nuclear organization and divisions. In Tetrahymena, the germline and soma are partitioned into two different nuclei within a single cell. Consistent with their functional specializations in sexual reproduction and gene expression, condensins of the germline nucleus and the polyploid somatic nucleus are composed of different subunits. Mitosis and meiosis of the germline nucleus and amitotic division of the somatic nucleus are all dependent on condensins. In condensin-depleted cells, a chromosome condensation defect was most striking at meiotic metaphase, when Tetrahymena chromosomes are normally most densely packaged. Live imaging of meiotic divisions in condensin-depleted cells showed repeated nuclear stretching and contraction as the chromosomes failed to separate. Condensin depletion also fundamentally altered chromosome arrangement in the polyploid somatic nucleus: multiple copies of homologous chromosomes tended to cluster, consistent with a previous model of condensin suppressing default somatic pairing. We propose that failure to form discrete chromosome territories is the common cause of the defects observed in the absence of condensins.


2017 ◽  
Vol 13 (Especial 2) ◽  
pp. 110-117
Author(s):  
Aline Sousa Camargos ◽  
Ariane Dantas

The success of core transfer (CT) depends on the origin of the donor cell, on the stage of development of the recipient cytoplast and on the synchronization between the cell cycle of the donor and recipient cells. The somatic nucleus must be reprogrammed after CT, thus restoring the totipotent state, and then resuming cellular development. However, it is noted that the efficiency of CT is still low, especially with a deficiency of the overall gene expression of the cloned embryo. However, the number of species of cloned mammals has been increasing in the last years, being this technique an important tool that does not aid in the effectiveness of buffalo reproduction. Thus, this review focuses on the description of the main processes pertinent to this process, as well as to analyze as future implications, as well as some factors that affect the success of nuclear transfer.


Sign in / Sign up

Export Citation Format

Share Document