CDH5, a Possible New Candidate Gene for Genetic Testing of Lymphedema

Author(s):  
Sandro Michelini ◽  
Maurizio Ricci ◽  
Bruno Amato ◽  
Stefano Gentileschi ◽  
Dominika Veselenyiova ◽  
...  
2020 ◽  
Vol 21 (18) ◽  
pp. 6780 ◽  
Author(s):  
Sandro Michelini ◽  
Maurizio Ricci ◽  
Dominika Veselenyiova ◽  
Sercan Kenanoglu ◽  
Danjela Kurti ◽  
...  

TIE1 is a cell surface protein expressed in endothelial cells. Involved in angiogenesis and lymphangiogenesis, including morphogenesis of lymphatic valves, TIE1 is important for lymphatic system functional integrity. The main purpose of this study was to identify different variants in the TIE1 gene that could be associated with lymphatic malformations or dysfunction and predisposition for lymphedema. In a cohort of 235 Italian lymphedema patients, who tested negative for variants in known lymphedema genes, we performed a further test for new candidate genes, including TIE1. Three probands carried different variants in TIE1. Two of these segregated with lymphedema or lymphatic dysfunction in familial cases. Variants in TIE1 could contribute to the onset of lymphedema. On the basis of our findings, we propose TIE1 as a candidate gene for comprehensive genetic testing of lymphedema.


2016 ◽  
Vol 29 (Suppl 1) ◽  
pp. S31-S34 ◽  
Author(s):  
Markéta Janatová ◽  
Marianna Borecká ◽  
Jana Soukupová ◽  
Petra Kleiblová ◽  
Jana Stříbrná ◽  
...  

2017 ◽  
Vol 177 (6) ◽  
pp. 485-501 ◽  
Author(s):  
Lucy Shapiro ◽  
Sumana Chatterjee ◽  
Dina G Ramadan ◽  
Kate M Davies ◽  
Martin O Savage ◽  
...  

Background GH insensitivity (GHI) is characterised by short stature, IGF-1 deficiency and normal/elevated serum GH. IGF-1 insensitivity results in pre- and post-natal growth failure with normal/high IGF-1 levels. The prevalence of genetic defects is unknown. Objective To identify the underlying genetic diagnoses in a paediatric cohort with GH or IGF-1 insensitivity using candidate gene (CGS) and whole-exome sequencing (WES) and assess factors associated with the discovery of a genetic defect. Methods We undertook a prospective study of 132 patients with short stature and suspected GH or IGF-1 insensitivity referred to our centre for genetic analysis. 107 (96 GHI, 88 probands; 11 IGF-1 insensitivity, 9 probands) underwent CGS. WES was performed in those with no defined genetic aetiology following CGS. Results A genetic diagnosis was discovered 38/107 (36%) patients (32% probands) by CGS. WES revealed 11 patients with genetic variants in genes known to cause short stature. A further 2 patients had hypomethylation in the H19/IGF2 region or mUPD7 consistent with Silver–Russell Syndrome (total with genetic diagnosis 51/107, 48% or 41/97, 42% probands). WES also identified homozygous putative variants in FANCA and PHKB in 2 patients. Low height SDS and consanguinity were highly predictive for identifying a genetic defect. Conclusions Comprehensive genetic testing confirms the genetic heterogeneity of GH/IGF-1 insensitivity and successfully identified the genetic aetiology in a significant proportion of cases. WES is rapid and may isolate genetic variants that have been missed by traditional clinically driven genetic testing. This emphasises the benefits of specialist diagnostic centres.


2021 ◽  
Author(s):  
Floranne Boulogne ◽  
Laura R. Claus ◽  
Henry Wiersma ◽  
Roy Oelen ◽  
Floor Schukking ◽  
...  

AbstractBackgroundGenetic testing in patients with suspected hereditary kidney disease may not reveal the genetic cause for the disorder as potentially pathogenic variants can reside in genes that are not yet known to be involved in kidney disease. To help identify these genes, we have developed KidneyNetwork, that utilizes tissue-specific expression to predict kidney-specific gene functions.MethodsKidneyNetwork is a co-expression network built upon a combination of 878 kidney RNA-sequencing samples and a multi-tissue dataset of 31,499 samples. It uses expression patterns to predict which genes have a kidney-related function and which (disease) phenotypes might result from variants in these genes. We applied KidneyNetwork to prioritize rare variants in exome sequencing data from 13 kidney disease patients without a genetic diagnosis.ResultsKidneyNetwork can accurately predict kidney-specific gene functions and (kidney disease) phenotypes for disease-associated genes. Applying it to exome sequencing data of kidney disease patients allowed us to identify a promising candidate gene for kidney and liver cysts: ALG6.ConclusionWe present KidneyNetwork, a kidney-specific co-expression network that accurately predicts which genes have kidney-specific functions and can result in kidney disease. We show the added value of KidneyNetwork by applying it to kidney disease patients without a molecular diagnosis and consequently, we propose ALG6 as candidate gene in one of these patients. KidneyNetwork can be applied to clinically unsolved kidney disease cases, but it can also be used by researchers to gain insight into individual genes in order to better understand kidney physiology and pathophysiology.Significance statementGenetic testing in patients with suspected hereditary kidney disease may not reveal the genetic cause for the patient’s disorder. Potentially pathogenic variants can reside in genes not yet known to be involved in kidney disease, making it difficult to interpret the relevance of these variants. This reveals a clear need for methods to predict the phenotypic consequences of genetic variation in an unbiased manner. Here we describe KidneyNetwork, a tool that utilizes tissue-specific expression to predict kidney-specific gene functions. Applying KidneyNetwork to a group of undiagnosed cases identified ALG6 as a candidate gene in cystic kidney and liver disease. In summary, KidneyNetwork can aid the interpretation of genetic variants and can therefore be of value in translational nephrogenetics and help improve the diagnostic yield in kidney disease patients.


2001 ◽  
Vol 120 (5) ◽  
pp. A468-A468 ◽  
Author(s):  
G GALLAGHER ◽  
P CHONG ◽  
J ESKDALE ◽  
A COOK ◽  
S CAIMS ◽  
...  

2009 ◽  
Vol 40 (12) ◽  
pp. 12 ◽  
Author(s):  
HOWARD P. LEVY
Keyword(s):  

2007 ◽  
Vol 38 (11) ◽  
pp. 1-23
Author(s):  
BETSY BATES

Sign in / Sign up

Export Citation Format

Share Document