disease phenotypes
Recently Published Documents


TOTAL DOCUMENTS

705
(FIVE YEARS 266)

H-INDEX

56
(FIVE YEARS 10)

2021 ◽  
Vol 20 ◽  
Author(s):  
Si-Min Chen ◽  
Xiao-Qing Tang

: Homocysteine (Hcy) is an important intermediate in methionine metabolism and generation of one-carbon unit, and its dysfunction is associated with many pathological states. Although Hcy is a non-protein amino acid, many studies have demonstrated protein-related homocysteine metabolism and possible mechanisms underlying homocysteinylation. Homocysteinylated proteins lose their original biological function and have a negative effect on the various disease phenotypes. Hydrogen sulfide (H2S) has been recognized as an important gaseous signaling molecule with mounting physiological properties. H2S modifies small molecules and proteins via sulfhydration, which is supposed to be essential in the regulation of biological functions and signal transduction in human health and disorders. This review briefly introduces Hcy and H2S, further discusses pathophysiological consequences of homocysteine modification and sulfhydryl modification, and ultimately makes a prediction that H2S might exert a protective effect on the toxicity of homocysteinylation of target protein via sulfhydration. The highlighted information here yields new insights for the role of protein modification by Hcy and H2S in diseases.


Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 910
Author(s):  
Maya Braun ◽  
Shachar Shoshani ◽  
Anna Mellul-Shtern ◽  
Yuval Tabach

Pathologic expansions of DNA nucleotide tandem repeats may generate toxic RNA that triggers disease phenotypes. RNA toxicity is the hallmark of multiple expansion repeat disorders, including myotonic dystrophy type 1 (DM1). To date, there are no available disease-modifying therapies for DM1. Our aim was to use drug repositioning to ameliorate the phenotype of affected individuals in a nematode model of DM1. As the RNA interference pathway plays a key role in mediating RNA toxicity, we investigated the effect of aurintricarboxylic acid. We demonstrated that by perturbing the RNA interference machinery using aurintricarboxylic acid, we could annihilate the RNA toxicity and ameliorate the phenotype. As our approach targets a universal disease mechanism, it is potentially relevant for more expansion repeat disorders.


2021 ◽  
Vol 22 (24) ◽  
pp. 13582
Author(s):  
Keziah M. Omenge ◽  
Florian Rümpler ◽  
Subha Suvetha Kathalingam ◽  
Alexandra C. U. Furch ◽  
Günter Theißen

Phytoplasmas are bacterial pathogens that live mainly in the phloem of their plant hosts. They dramatically manipulate plant development by secreting effector proteins that target developmental proteins of their hosts. Traditionally, the effects of individual effector proteins have been studied by ectopic overexpression using strong, ubiquitously active promoters in transgenic model plants. However, the impact of phytoplasma infection on the host plants depends on the intensity and timing of infection with respect to the developmental stage of the host. To facilitate investigations addressing the timing of effector protein activity, we have established chemical-inducible expression systems for the three most well-characterized phytoplasma effector proteins, SECRETED ASTER YELLOWS WITCHES’ BROOM PROTEIN 11 (SAP11), SAP54 and TENGU in transgenic Arabidopsis thaliana. We induced gene expression either continuously, or at germination stage, seedling stage, or flowering stage. mRNA expression was determined by quantitative reverse transcription PCR, protein accumulation by confocal laser scanning microscopy of GFP fusion proteins. Our data reveal tight regulation of effector gene expression and strong upregulation after induction. Phenotypic analyses showed differences in disease phenotypes depending on the timing of induction. Comparative phenotype analysis revealed so far unreported similarities in disease phenotypes, with all three effector proteins interfering with flower development and shoot branching, indicating a surprising functional redundancy of SAP54, SAP11 and TENGU. However, subtle but mechanistically important differences were also observed, especially affecting the branching pattern of the plants.


Author(s):  
Bruno Boivin ◽  
Kasper C.D. Roet ◽  
Xuan Huang ◽  
Kyle W. Karhohs ◽  
Mohammad H. Rohban ◽  
...  

Patient stem cell-derived models enable imaging of complex disease phenotypes and the development of scalable drug discovery platforms. Current preclinical methods for assessing cellular activity do not, however, capture the full intricacies of disease-induced disturbances, and instead typically focus on a single parameter, which impairs both the understanding of disease and the discovery of effective therapeutics. Here, we describe a cloud-based image processing and analysis platform that captures the intricate activity profile revealed by GCaMP fluorescent recordings of intracellular calcium changes and enables the discovery of molecules that correct 153 parameters that define the amyotrophic lateral sclerosis motor neuron disease phenotype. In a high-throughput screen, we identified compounds that revert the multiparametric disease profile to that found in healthy cells, a novel and robust measure of therapeutic potential quite distinct from unidimensional screening. This platform can guide the development of therapeutics that counteract the multifaceted pathological features of diseased cellular activity.


Author(s):  
Navdeep Gogna ◽  
Sonia Weatherly ◽  
Fuxin Zhao ◽  
Gayle B Collin ◽  
Jai Pinkney ◽  
...  

Adipor1tm1Dgen and Mfrprd6 mutant mice share similar eye disease characteristics. Previously, studies established a functional relationship of ADIPOR1 and MFRP proteins in maintaining retinal lipidome homeostasis and visual function. However, the independent and/or interactive contribution of both the genes to similar disease phenotypes, including fundus spots, decreased axial length and photoreceptor degeneration has yet to be examined. We performed a gene-interaction study where homozygous Adipor1tm1Dgen and Mfrprd6 mice were bred together and the resulting doubly heterozygous F1 offspring were intercrossed to produce 210 F2 progeny. Four-month-old mice from all nine genotypic combinations obtained in the F2 generation were assessed for white spots by fundus photo documentation, for axial length by caliper measurements, and for photoreceptor degeneration by histology. Two-way factorial ANOVA was performed to study individual as well as gene interaction effects on each phenotype. Here, we report the first observation of reduced axial length in Adipor1tmlDgen homozygotes. We show that while Adipor1 and Mfrp interact to affect spotting and degeneration, they act independently to control axial length, highlighting the complex functional association between these two genes. Further examination of the molecular basis of this interaction may help in uncovering mechanisms by which these genes perturb ocular homeostasis.


2021 ◽  
Author(s):  
li yanze ◽  
Hao Zhang ◽  
Kun Huang ◽  
Zhaohui Wang ◽  
Huang Kai

Microbiome in the human body environment is related to the occurrence of a variety of disease phenotypes. Recent studies discovered that lung is an open organism with in touch of air and microbe in it, and the presence of some microbes in lung cancer tissues proved that there are many microbes in lungs. In this project, we collected lung tissue, feces and sputum from three Bioprojects of NCBI related to lung cancer (LC). Each project contains LC cases and lung normal (LN) controls. Those three projects contain a total of 339 samples of 16s rRNA sequencing data. By analyzing the composition of microbes in the three environments, and predicting their functions we found that compared with sputum, the ecological environment of fecal microbe is closer to tissue microbes in terms of evolutionary relationship, indicating that the impact of feces on tissue microbes is greater than that of the sputum. We used Picrust2 to predict the differential microbe function of lung cancer (LC) and the control (Lung Normal, LN) groups in the three environments, and found that at the microbe genetic level, compared to feces and sputum, sputum and tissues, feces and tissues have more common Differential genes, at the level of differential enzyme genes and differential pathways, feces and tissues have more common differences compared to feces and sputum, sputum and tissues. Our results showed that the similarity of feces and tissue microbiome is closer than the similarity of sputum and feces microbe. Through Spearman correlation analysis based on the relative abundance of predicted pathways and the relative abundance of genus classified by LDA analysis as marker diseases and healthy samples. The results indicated that the activation of marker genus in sputum and feces and significantly changed pathways has an opposite trend, and there are many pathways contributing to glycolysis are correlated with marker genus. Patients with LC has potential to regulate the microbe composition of feces, tissues and sputum by regulating metabolism.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kari Neier ◽  
Tianna E. Grant ◽  
Rebecca L. Palmer ◽  
Demario Chappell ◽  
Sophia M. Hakam ◽  
...  

AbstractRett syndrome (RTT) is a regressive neurodevelopmental disorder in girls, characterized by multisystem complications including gut dysbiosis and altered metabolism. While RTT is known to be caused by mutations in the X-linked gene MECP2, the intermediate molecular pathways of progressive disease phenotypes are unknown. Mecp2 deficient rodents used to model RTT pathophysiology in most prior studies have been male. Thus, we utilized a patient-relevant mouse model of RTT to longitudinally profile the gut microbiome and metabolome across disease progression in both sexes. Fecal metabolites were altered in Mecp2e1 mutant females before onset of neuromotor phenotypes and correlated with lipid deficiencies in brain, results not observed in males. Females also displayed altered gut microbial communities and an inflammatory profile that were more consistent with RTT patients than males. These findings identify new molecular pathways of RTT disease progression and demonstrate the relevance of further study in female Mecp2 animal models.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3389
Author(s):  
Katarzyna Gaweda-Walerych ◽  
Emilia Jadwiga Sitek ◽  
Ewa Narożańska ◽  
Emanuele Buratti

Parkin and PINK1 are key regulators of mitophagy, an autophagic pathway for selective elimination of dysfunctional mitochondria. To this date, parkin depletion has been associated with recessive early onset Parkinson’s disease (PD) caused by loss-of-function mutations in the PARK2 gene, while, in sporadic PD, the activity and abundance of this protein can be compromised by stress-related modifications. Intriguingly, research in recent years has shown that parkin depletion is not limited to PD but is also observed in other neurodegenerative diseases—especially those characterized by TDP-43 proteinopathies, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here, we discuss the evidence of parkin downregulation in these disease phenotypes, its emerging connections with TDP-43, and its possible functional implications.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 4173
Author(s):  
Silvia Bolsega ◽  
André Bleich ◽  
Marijana Basic

The intestinal microbiota conveys significant benefits to host physiology. Although multiple chronic disorders have been associated with alterations in the intestinal microbiota composition and function, it is still unclear whether these changes are a cause or a consequence. Hence, to translate microbiome research into clinical application, it is necessary to provide a proof of causality of host–microbiota interactions. This is hampered by the complexity of the gut microbiome and many confounding factors. The application of gnotobiotic animal models associated with synthetic communities allows us to address the cause–effect relationship between the host and intestinal microbiota by reducing the microbiome complexity on a manageable level. In recent years, diverse bacterial communities were assembled to analyze the role of microorganisms in infectious, inflammatory, and metabolic diseases. In this review, we outline their application and features. Furthermore, we discuss the differences between human-derived and model-specific communities. Lastly, we highlight the necessity of generating novel synthetic communities to unravel the microbial role associated with specific health outcomes and disease phenotypes. This understanding is essential for the development of novel non-invasive targeted therapeutic strategies to control and modulate intestinal microbiota in health and disease.


Sign in / Sign up

Export Citation Format

Share Document